Advertisement

Integral geometry

  • M. Schreiber
Part of the Universitext book series (UTX)

Abstract

Let \( \mathbb{E} \) denote the set of all rigid motions of the plane.(1) A rigid motion T consists of a rotation R(α) through an angle α followed by a translation by a vector \( \mathop {\rm{a}}\limits^ \to \). In symbols,
$$ {\rm{T}}\mathop {\rm{x}}\limits^ \to = \mathop {\rm{a}}\limits^ \to {\rm{R(\alpha )}}\mathop {\rm{x}}\limits^ \to . $$
(1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag, New York Inc. 1977

Authors and Affiliations

  • M. Schreiber
    • 1
  1. 1.Department of MathematicsThe Rockefeller UniversityNew YorkUSA

Personalised recommendations