Skip to main content

A Simulation Model for Decomposition in Grasslands

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 26))

Abstract

A model has been developed to simulate the dynamics of decomposers and substrates in grasslands. Substrates represented are humic material, feces, and dead plant and animal remains. Except for humic material, substrates are further divided into a rapidly and a slowly decomposing fraction. The proportion of rapidly decomposing material in a substrate is predicted from its initial nitrogen content. The belowground portion of the system is divided into layers because temperature and soil water, the most important driving variables for the model, vary with depth. Decomposition rates are predicted from temperature, water tension, and inorganic nitrogen concentration.

Taxonomic groups of decomposers are not distinguished, but a distinction is made between active and inactive states, which differ in both respiration and death rates and in that only active decomposers assimilate substrate.

The model’s predictions compare favorably to data on carbon-dioxide evolution and to litter-bag experiments, but not to ATP estimates of active microbial bioass. The model indicates a profound influence of soil depth on decomposition rates and on decomposer biomass dynamics, growth yield, and secondary productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M.: Introduction to Soil Microbiology. New York: John Wiley and Sons, 1961, 472 pp.

    Google Scholar 

  • Alexander, M.: Microbial Ecology. New York: John Wiley and Sons, 1971, 511 pp.

    Google Scholar 

  • Allison, F. E., Sherman, M. S., Pinck, L. A.: Maintenance of soil organic matter: I. Inorganic soil colloid as a factor in retention of carbon during formation of humus. Soil Sci. 68, 463–478 (1949)

    Article  CAS  Google Scholar 

  • Andrews, R., Coleman, D. C, Ellis, J. E., Singh, J. S.: Energy flow relationships in a shortgrass prairie ecosystem. In: Proceedings of the First International Congress of Ecology. Centre for Agr. Publ. and Doc, Wageningen, The Netherlands, 1974, pp. 22–28

    Google Scholar 

  • Anway, J. C., Brittain, E. G., Hunt, H. W., Innis, G. S., Parton, N. J., Rodell, C. F., Sauer, R. H.: Elm: Version I. O. US/IBP Grassland Biome Tech. Rep. No. 156. Fort Collins: Colorado State Univ., 1972, 285 pp.

    Google Scholar 

  • Ausmus, B. S.: The use of the ATP assay in terrestrial decomposition studies. Bull. Ecol. Res. Commun. (Stockholm) 17, 223-234 (1973)

    CAS  Google Scholar 

  • Babiuk, L. A., Paul, E. A.: The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can. J. Microbiol. 16, 57–62 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew, W. V., Norman, A. G.: The threshold moisture content for active decomposition of some mature plant materials. Soil Sci. Soc. Am., Proc. 11, 270–279 (1946)

    Article  Google Scholar 

  • Bhaumik, H. D., Clark, F. E.: Soil moisture tension and microbiological activity. Soil Sci. Soc. Am., Proc. 12, 234–238 (1947)

    Article  Google Scholar 

  • Bledsoe, L. J., Francis, R. C., Swartzman, G. L., Gustafson, J. D.: PWNEE: A grassland ecosystem model. US/IBP Grassland Biome Tech. Rep. No. 64. Fort Collins: Colorado State Univ., 1971, 179 pp.

    Google Scholar 

  • Boylen, C. W., Ensign, J. C.: Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes. J. Bacteriol. 103, 578–587 (1970)

    PubMed  CAS  Google Scholar 

  • Broadfoot, W. M., Pierre, W. H.: Forest soil studies: I. Relation of rate of decomposition of tree leaves to their acid-base balance and other chemical properties. Soil Sci. 48, 329–348 (1939)

    Article  CAS  Google Scholar 

  • Brock, T. D.: Microbial growth rates in nature. Bacteriol. Rev. 35, 39–58 (1971)

    PubMed  CAS  Google Scholar 

  • Brown, J. R., Frederick, L. R.: Decomposition of the water-soluble fraction of sudangrass residue in soil. Plant Soil 28, 467–470 (1968)

    Article  Google Scholar 

  • Bunnell, F. L.: Decomposition: Models and the real world. Bull. Ecol. Res. Commun. (Stockholm) 17, 407–415 (1973)

    Google Scholar 

  • Bunnell, F. L., Dowding, P.: ABISKO-A generalized decomposition model for comparisons between sites. US/IBP Tundra Biome Rep. 73-6. College, Alaska: Univ. Alaska, 1973

    Google Scholar 

  • Campbell, C. A., Paul, E. A., Rennie, D. A., McCallum, K. J.: Applicability of the carbon-dating method of analysis to soil humus studies. Soil Sci. 104, 217–224 (1967)

    Article  CAS  Google Scholar 

  • Clark, F. E.: Decomposition of organic materials in grassland soil. US/IBP Grassland Biome Tech. Rep. No. 61. Fort Collins: Colorado State Univ., 1970, 23 pp.

    Google Scholar 

  • Clark, F. E., Paul, E. A.: The microflora of grasslands. Adv. Agron. 22, 375–435 (1970)

    Article  CAS  Google Scholar 

  • Curry, J. P.: The decomposition of organic matter in soil. Part I. The role of the fauna in decaying grassland herbage. Soil Biol. Biochem. 1, 235–258 (1969)

    Google Scholar 

  • Douglas, L. A., Tedrow, J. C. F.: Organic matter decomposition rates in Arctic soils. Soil Sci. 88, 305–312 (1959)

    Article  CAS  Google Scholar 

  • Doxtader, K. G.: Microbial biomass measurements at the Pawnee Site: Preliminary methodology and results. US/IBP Grassland Biome Tech. Rep. No. 21. Fort Collins; Colorado State Univ., 1969, 16 pp.

    Google Scholar 

  • Drobnik, J.: The effect of temperature on soil respiration. Folia Microbiol. 7, 132–140 (1962)

    Article  Google Scholar 

  • Eckenfelder, W. W., Jr.: Water quality engineering for practicing engineers. New York: Barnes & Noble, 1970, 328 pp.

    Google Scholar 

  • Ensign, J. C.: Long term starvation survival of rod and spherical cells of Arthrobacter crystallopoites. J. Bacteriol. 103, 569–577 (1970)

    PubMed  CAS  Google Scholar 

  • Felbeck, G. T., Jr.: Chemical and biological characterization of humic matter. In: Soil Biochemistry, Vol. 2. McLaren, A. D., Skujins, J. (eds.) New York: Marcel Dekker, 1971, pp. 36–59

    Google Scholar 

  • Floate, M. J. S.: Decomposition of organic materials from hill soils and pastures. II. Comparative studies on the mineralization of carbon, nitrogen and phosphorus from plant materials and sheep faeces. Soil Biol. Biochem. 2, 173–185 (1970)

    Article  CAS  Google Scholar 

  • Gaudy, A. F., Jr., Komolrit, K., Bhatla, M. N.: Sequential substrate removal in heterogeneous populations. J. Water Pollut. Control Fed. 35, 903–922 (1963)

    CAS  Google Scholar 

  • Giese, A. C.: Cell Physiology, 3rd ed. Philadelphia: Saunders, 1968, 671 pp.

    Google Scholar 

  • Gray, T. R. G., Williams, S. T.: Microbial productivity in soil. p. 255–285. In: Microbes and Biological Productivity. 21st Symp. Soc. Gen. Microbiology. Hughes, D. E., Rose, A. H. (eds.). Oxford and New York: Cambridge Univ. Press, (1971)

    Google Scholar 

  • Grill, E. V., Richards, F. A.: Nutrient regeneration from phytoplankton decomposing in seawater. J. Marine Res. 22, 51–69 (1964)

    CAS  Google Scholar 

  • Harrison, A. P., Jr.: The response of Bacterium lactis aerogenes when held at growth temperature in the absence of nutriment: An analysis of the survival curves. Roy. Soc. (Lond.), Proc. B. 152, 418–428 (1960)

    Article  Google Scholar 

  • Herbert, D.: Some principles of continuous culture, In: Recent Progress in Microbiology. VII International Congress of Microbiology. Tunevall, G. (ed.). Stockholm: Almqvist and Wiksell, 1958, pp. 381–396

    Google Scholar 

  • Jager, G.: Changes in the activity of soil microorganisms influenced by physical factors (drying-remoistening, freezing-thawing). In: Graff, O., Satchell, J. E. (eds.) Progress in Soil Biology. Amsterdam: North Holland, 1967, pp. 178–191

    Google Scholar 

  • Jenny, H., Gessel, S. P., Bingham, F. T. Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci. 68, 419–432 (1949)

    Article  CAS  Google Scholar 

  • Jensen, H. L.: The microbiology of farmyard manure decomposition in soil. III. Decomposition of the cells of micro-organisms. J. Agr. Sci. 22, 1–25 (1932)

    Article  CAS  Google Scholar 

  • Klein, D. A.: Seasonal carbon flow and decomposer parameter relationships in a semiarid grassland soil. Ecology 58, 184–190 (1977).

    Article  CAS  Google Scholar 

  • Koelling, M. R., Kucera, C. L.: Dry matter losses and mineral leaching in bluestem standing crop and litter. Ecology 46, 529–532 (1965)

    Article  Google Scholar 

  • Lamanna, C., Mallette, M. F.: Basic Bacteriology, 3rd ed. Baltimore: Williams & Wilkins, 1965, 1001 pp.

    Google Scholar 

  • Lewis, J. A., Starkey, R. L.: Vegetable tannins, their decomposition and effects on decomposition of some organic compounds. Soil Sci. 106, 241–247 (1968)

    Article  CAS  Google Scholar 

  • Marr, A. G., Nilson, E. H., Clark, D. J.: The maintenance requirement of Escherichia coli. Ann. New York Acad. Sci. 102, 536–548 (1963)

    Article  CAS  Google Scholar 

  • Martel, Y., Paul, E. A.: An example of a process model: The carbon turnover for use in ecosystem studies in grasslands. In: Grassland Ecosystems: Reviews of Research. Range Sci. Dep. Sci. Ser. No. 7. Coupland, R. T., Van Dyne, G. M. (eds.). Fort Collins: Colorado State Univ., 1970, pp. 179–189

    Google Scholar 

  • Martin, J. P., Haider, K.: Microbial activity in relation to soil humus formation. Soil Sci. 111, 54–63 (1971)

    Article  CAS  Google Scholar 

  • Millar, H. C., Smith, F. B., Brown, P. E.: The rate of decomposition of various plant materials in soils. J. Am. Soc. Agron. 28, 914–923 (1936)

    Article  CAS  Google Scholar 

  • Minderman, G.: Addition, decomposition and accumulation of organic matter in forests. J. Ecol. 56, 355–362 (1968)

    Article  Google Scholar 

  • Nykvist, N.: Leaching and decomposition of litter. I. Experiments on leaf litter of Fraxinus excelsior. Oikos 10, 190–211 (1959a)

    Article  Google Scholar 

  • Nykvist, N.: Leaching and decomposition of litter. II. Experiments on needle litter of Pinus silvestris. Oikos 10, 212–224 (1959b)

    Article  Google Scholar 

  • Nykvist, N.: Leaching and decomposition of litter. III. Experiments on leaf litter of Betula verrucosa. Oikos 12, 249–263 (1961a)

    Article  CAS  Google Scholar 

  • Nykvist, N.: Leaching and decomposition of litter. IV. Experiments on needle litter of Picea abies. Oikos 12, 264–279 (1961b)

    Article  Google Scholar 

  • Otsuki, A., Hanya, T.: Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition. Limnol. Oceanogr. 17, 248–257 (1972)

    Article  CAS  Google Scholar 

  • Park, D.: Survival of microorganisms in soil. In: Ecology of Soil-borne Plant Pathogens. Baker, K. F., Synder, W. C. (eds.). Berkeley: Univ. California Press, 1965, pp. 82–98

    Google Scholar 

  • Patten, B. C.: A simulation of the shortgrass prairie ecosystem. Simulation 19, 177–186 (1972)

    Article  Google Scholar 

  • Payne, W. J.: Energy yields and growth of heterotrophs. Annu. Rev. Microbiol. 24, 17–52 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Pendleton, D. F.: Degradation of grassland plants. M.S. thesis, Colorado State Univ., Fort Collins, 1972, 37 p.

    Google Scholar 

  • Pinck, L. A., Allison, F. E., Sherman, M. S.: Maintenance of soil organic matter II. Losses of carbon and nitrogen from young and mature plant materials during decomposition in soil. Soil Sci. 69, 391–401 (1950)

    Article  CAS  Google Scholar 

  • Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Roy. Soc. (London) Proc. B. 163, 224–231 (1965)

    Article  CAS  Google Scholar 

  • Postgate, J. R.: The viability of very slow-growing populations: A model for the natural ecosystem. Bull. Ecol. Res. Commun. (Stockholm) 17, 287–292 (1973)

    Google Scholar 

  • Randell, R. L., Gyllenberg, G. G., Kae, S. L., Jones, D. C., Kowal, H.: Data analysis and modelling. In: Matador Project Fifth Annual Report. Coupland, R. T. (ed.). Saskatoon, Saskatchewan: Canadian IBP Grassland Zone Programme, 1972, pp. 74–169

    Google Scholar 

  • Reuss, J. O.: Decomposer and nitrogen cycling investigations in the Grassland Biome. In: Preliminary Analysis of Structure and Function in Grasslands. Range Sci. Dep. Sci. Ser. No. 10. French, N. R. (ed.). Fort Collins: Colorado State Univ., 1971, pp. 133–146

    Google Scholar 

  • Schmidt, E. L.: Chairman’s summary of panel discussion. 1. The traditional plate count technique among modern methods. Bull. Ecol. Res. Commun. (Stockholm) 17, 453–454 (1973)

    Google Scholar 

  • Schulze, K. L., Lipe, R. S.: Relationship between substrate concentration, growth rate and respiration rate of Escherichia coli in continuous culture. Archiv für Mikrobiologie 48, 1–20 (1964)

    Article  Google Scholar 

  • Shields, J. S., Paul, E. A., Lowe, W. E., Parkinson, D.: Turnover of microbial tissue in soil under field conditions. Soil Biol. Biochem. 5, 753–764 (1973)

    Article  Google Scholar 

  • Sneath, P. H. A.: Longevity of micro-organisms. Nature 195, 643–646 (1962)

    Article  PubMed  CAS  Google Scholar 

  • Sparrow, E. B., Doxtader, K. G.: Adenosine triphosphate (ATP) in grassland soil: Its relationship to microbial biomass and activity. US/IBP Grassland Biome Tech. Rep. No. 224. Fort Collins: Colorado State Univ., 1973, 161 pp.

    Google Scholar 

  • Sussman, A. S.: Dormancy of soil microorganisms in relation to survival. In: Ecology of Soil-borne Plant Pathogens. Baker, K. F., Snyder, W. C. (eds.). Berkeley: Univ. California Press, 1965, pp. 99–110

    Google Scholar 

  • Tenney, F. G., Waksman, S. A.: Composition of natural organic materials and their decomposition in the soil: IV. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Sci. 28, 55–84 (1929)

    Article  CAS  Google Scholar 

  • Timin, M. E., Collier, B. D., Zich, J., Walters, D.: A computer simulation of the Arctic tundra ecosystem near Barrow, Alaska. US/IBP Tundra Biome Rep. 73-1. College, Alaska: Univ. Alaska, 1973

    Google Scholar 

  • Van Cleve, K., Sprague, D.: Respiration rates in the forest floor of birch and aspen stands in interior Alaska. Arctic Alpine Res. 3, 17–26 (1971)

    Article  Google Scholar 

  • Wase, D. A. J., Hough, J. S.: Continuous culture of yeast on phenol. J. Gen. Microbiol. 42, 13–23 (1966)

    PubMed  CAS  Google Scholar 

  • Weaver, J. E.: Rate of decomposition of roots and rhizomes of certain range grasses in undisturbed prairie soil. Ecology 28, 221–240 (1947)

    Article  Google Scholar 

  • Webley, D. M., Jones, D.: Biological transformations of microbial residues in soil, In: Soil Biochemistry, Vol. 2. McLaren, A. D., Skujins, J. (eds.) New York: Marcel Dekker, 1971, pp. 446–485

    Google Scholar 

  • Witkamp, M.: Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47, 194–201 (1966)

    Article  Google Scholar 

  • Witkamp, M., Olson, J. S.: Breakdown of confined and nonconfined oak litter. Oikos 14, 138–147 (1963)

    Article  Google Scholar 

Download references

Authors

Editor information

George S. Innis

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hunt, H.W. (1978). A Simulation Model for Decomposition in Grasslands. In: Innis, G.S. (eds) Grassland Simulation Model. Ecological Studies, vol 26. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9929-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9929-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9931-8

  • Online ISBN: 978-1-4612-9929-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics