Skip to main content

Thyristor maximum voltage-blocking capability

  • Chapter
Thyristor Physics

Part of the book series: Applied Physics and Engineering ((APPLIED PHYS,volume 12))

  • 332 Accesses

Summary

The maximum forward- and reverse-voltage-blocking capability of power thyristors are dependent on the small-signal current gains of the p-n-p and n-p-n transistor sections, on the junction type, and on silicon resistivity.

For small values of current gains, the maximum forward- and reverse-blocking potentials are equal. In the shorted cathode emitter case, both the maximum forward breakover point and maximum reverse-blocking voltage are determined by the condition, α1 = 1/M, which states that the breakdown occurs when the small-signal common base current gain of the idealized symmetrical p-n-p thyristor section is equal to the reciprocal of the avalanche-multiplication factor M. This relationship permits the approximate computation of the maximum blocking capability since the multiplication factor and current gain are known voltage functions.

Improved breakover and/or other characteristics can be obtained in the reverse conducting thyristor (RCT) in which both the cathode and anode emitters have shorted regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Herlet. The maximum blocking capability of silicon thyristors. Solid State Electronics, 8: 655–671, 1968.

    Article  ADS  Google Scholar 

  2. J. L. Moll, J. L. Su, and A. C. M. Wang. Multiplication in collector junctions of silicon n-p-n and p-n-p transistors. IEEE Trans. Electron Devices, ED-17 (5): 420–423, 1970.

    Article  Google Scholar 

  3. S. M. Sze and G. Gibbons. Avalanche breakdown voltages of abrupt and linearly graded p-n junctions in Ge, Si, GaAs, GaP. Appl. Phys. Lett., 8: 111, 1966.

    Article  ADS  Google Scholar 

  4. J. Olmstead. RCA, Solid State Technology Center, Somerville, N.J., private communication, 1970.

    Google Scholar 

  5. P. Kannam. RCA, Solid State Technology Center, Somerville, N.J., private communication, 1973.

    Google Scholar 

  6. H. Lawrence and R. M. Werner, Jr. Diffused junction depletion layer calculations. Monograph 3517, Bell Telephone System Technical Publications, and BSTJ, 39: 389–404, 1960.

    Google Scholar 

  7. C. R. Crowell and S. M. Sze. Temperature dependence of avalanche multiplication on semiconductors. Appl Phys. Lett., 9: 242–244, 1966.

    Article  ADS  Google Scholar 

  8. R. Davies and F. Gentry. Control of electric fields at the surface of p-n junctions. IEEE Trans. Electron Devices, ED-11: 313–323, 1964.

    Article  Google Scholar 

  9. Jozef Cornu. Field distribution near the surface of beveled p-n junctions in high-voltage devices. Trans. Electron Devices, ED-20 (7): 347–352, 1973.

    Article  Google Scholar 

  10. R. A. Kokosa and B. R. Tuft. A high voltage, high temperature reverse conducting thyristor. IEEE Trans. Electron Devices, ED-17 (9): 667–672, 1970.

    Article  Google Scholar 

  11. L. S. Greenberg, and E. F. McKeon. ITR—A new reverse conducting thyristor for horizontal deflection. 22nd Electronic Components Conference, Washington, D.C., May 1972.

    Google Scholar 

  12. T. Matsuzawa and Y. Usunaga. Some electrical characteristics of a reverse conducting thyristor. IEEE Trans. Electron Devices, ED-17 (9): 816, 1970.

    Google Scholar 

  13. J. L. Moll. Physics of Semiconductors. New York: McGraw-Hill, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Blicher, A. (1976). Thyristor maximum voltage-blocking capability. In: Thyristor Physics. Applied Physics and Engineering, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9877-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9877-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9879-3

  • Online ISBN: 978-1-4612-9877-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics