New aspects of organophosphorus pesticides. IV. Newer aspects of the metabolism of phosphonate insecticides

  • Julius J. Menn
  • J. Bruce McBain
Part of the Residue Reviews book series (RECT, volume 53)


Organophosphorus (OP) compounds comprise an increasingly important class of insecticides owing to the greater emphasis on use of more selective and biodegradable chemicals for management of insect pest populations. There are available at present approximately 85 commercial and experimental OP insecticide chemicals (Kenaga and Allison 1969) including several phosphonate esters (OP compounds with a P—C bond).


Methyl Parathion Organophosphorus Pesticide Phosphorus Acid Methylphosphonic Acid Phosphonate Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, M. K., J. E. Casida, and R. E. Nichols: Bovine metabolism of organophosphorus insecticides: Significance of rumen fluid with particular reference to parathion. J. Agr. Food Chem. 6, 740 (1958).CrossRefGoogle Scholar
  2. Appleton, H. T., and T. Nakatsugawa: Paraoxon deethylation in the metabolism of parathion. Pest. Biochem. Physiol. 2, 286 (1972).CrossRefGoogle Scholar
  3. Bull, D. L.: Metabolism of organophosphorus insecticides in animals and plants. Residue Reviews 43, 1 (1972).PubMedGoogle Scholar
  4. Casida, J. E., and L. Lykken: Metabolism of organic pesticide chemicals in higher plants. Ann. Rev. Plant Physiol. 20, 607 (1969).CrossRefGoogle Scholar
  5. Dauterman, W. C.: Biological and nonbiological modifications of organophosphorus compounds. Bull. W.H.O. 44, 133 (1971).PubMedGoogle Scholar
  6. Endo, K., Y. Mori, K. Kakiki, and T. Misato: Studies on absorption, translocation and metabolic fate of radio active Inezin in rice plant. Nippon Nogei Kagaku Kaishi 44, 356 (1970).Google Scholar
  7. Fukuto, T. R., and R. L. Metcalf: The effect of structure on the reactivity of alkylphosphonate esters. J. Amer. Chem. Soc. 81, 372 (1959).CrossRefGoogle Scholar
  8. Hambrook, J. L., D. J. Howells, and D. Utley: Degradation of phosphonates. Breakdown of Soman (O-pinacolyl methylphosphonofluoridate) in wheat plants. Pest. Sci. 2, 172 (1971).Google Scholar
  9. Harkness, D. R.: Bacterial growth on aminoalkylphosphonic acids. J. Bacteriol. 92, 623 (1966).PubMedGoogle Scholar
  10. Harris, L. W., L. M. Braswell, J. P. Fleisher, and W. J. Cliff: Metabolites of pinacolyl methylphosphonofluoridate (Soman) after enzymatic hydrolysis in vitro. Biochem. Pharmacol. 13, 1129 (1964).PubMedCrossRefGoogle Scholar
  11. Hodgson, E., and J. E. Casida: Mammalian enzymes involved in the degradation of 2,2-dichlorovinyl dimethyl phosphate. J. Agr. Food Chem. 10, 208 (1962).CrossRefGoogle Scholar
  12. Hollingworth, R. M., T. R. Fukuto, and R. L. Metcalf: Selectivity of Sumithion compared with methyl parathion. Influence of structure on anticholinesterase activity. J. Agr. Food Chem. 15, 235 (1967 a).CrossRefGoogle Scholar
  13. - -, R. L. Metcalf, and T. R. Fukuto: The selectivity of Sumithion compared with methyl parathion. Metabolism in the white mouse. J. Agr. Food Chem. 15, 242 (1967 b).CrossRefGoogle Scholar
  14. Holmstead, R. L., T. R. Fukuto, and R. B. March: The metabolism of O-(4-bromo-2,5-dichlorophenyl) O-methyl phenylphosphonothioate (leptophos) in the white mouse and on the cotton plant. Arch. Environ. Contam. Toxicol. 1, 133 (1973).PubMedCrossRefGoogle Scholar
  15. Hoskin, F. C. G.: Some observations concerning the biochemical inertness of methylphosphonic and isopropyl methylphosphonic acids. Canad. J. Biochem. 34, 743 (1956).PubMedGoogle Scholar
  16. Kenaga, E. E., and W. E. Allison: Commercial and experimental organic insecticides (1971 Revision). Bull. Entomol. Soc. Amer. 15, 85 (1969).Google Scholar
  17. Marco, G. J., and E. G. Jaworski: Metabolism of O-phenyl-O′-(4-nitrophenyl) methylphosphonothionate (Colep) in plants and animals. J. Agr. Food Chem. 12, 305 (1964).CrossRefGoogle Scholar
  18. McBain, J. B., and J. J. Menn: Spontaneous conversion of alkylphosphonodithioate insecticides to cholinesterase inhibitors. Presented Ann. Meeting Entomol. Soc. Amer., Philadelphia, Pa., Nov. 30-Dec. 3 (1964).Google Scholar
  19. -, L. J. Hoffman, and J. J. Menn: Metabolic degradation of O-ethyl S-phenyl ethylphosphonodithioate (Dyfonate) in potato plants. J. Agr. Food Chem. 18, 1139 (1970).CrossRefGoogle Scholar
  20. - - - Dyfonate metabolism studies. II. Metabolic pathway of O-ethyl S-phenyl ethylphosphonodithioate in rats. Pest. Biochem. Physiol. 1, 356 (1971 a).CrossRefGoogle Scholar
  21. - -, I. Yamamoto, and J. E. Casida: Mechanism of activation and deactivation of Dyfonate (O-ethyl S-phenyl ethylphosphonodithioate) by rat liver microsomes. Life Sci. 10 (Part II), 947 (1971 b).CrossRefGoogle Scholar
  22. Menn, J. J.: Terminal residues of phosphonate insecticides. In: Pesticide terminal residues, Tel Aviv, Israel (1971); Suppl. Pure Applied Chem., p. 57 (1971).Google Scholar
  23. - Absorption and metabolism of insecticide chemicals in plants. In: Degradation of synthetic chemicals in the biosphere. Washington, D.C.: Nat. Acad. Sci. (1972).Google Scholar
  24. - -, and K. Szabo: The synthesis and biological properties of new O-alkyl S-aryl alkylphosphonodithioates. J. Econ. Entomol. 58, 734 (1965).Google Scholar
  25. Nakatsugawa, T., N. M. Tolman, and P. A. Dahm: Degradation and activation of parathion analogs by microsomal enzymes. Biochem. Pharmacol. 17, 1517 (1968).PubMedCrossRefGoogle Scholar
  26. - - - Degradation of parathion in the rat. Biochem. Pharmacol. 18, 1103 (1969).PubMedCrossRefGoogle Scholar
  27. Ptashne, K. A., R. M. Wolcot, and R. A. Neal: Oxygen-18 studies on the chemical mechanisms of the mixed function oxidase catalyzed desulfuration and dearylation reactions of parathion. J. Pharmacol. Expt. Therap. 179, 380 (1971).Google Scholar
  28. Ryzkov, V. L., M. I. Kabachnik, L. M. Tarasevich, T. Ya. Medved, N. A. Zeitlenok, N. K. Marchenko, V. A. Vagzhanova, E. F. Ulanova, N. V. Cheburkina, and D. I. Ivanovskii: Biological activity of α-aminophosphonic acids. Doklady Akad. Nauk S.S.S.R. 98, 849 (1954); through Chem. Abstr. 49, 3404 (1955).Google Scholar
  29. Schrader, G.: Die Entwicklung neuer insektizider Phosphorsäure-Ester. 3., neubearbeitete Aufl. Weinheim/Bergstr: Verlag Chemie, (1963).Google Scholar
  30. - Synthesis and properties of important organophosphorus insecticides. Pflanzensch. Ber. 36, 29 (1967).Google Scholar
  31. Szabo, K., and J. J. Menn: Synthesis and biological properties of insecticidal IV- (mercaptomethyl) phthalimide-S-(O-alkyl) -alkylphosphonodithioates and thiolates. J. Agr. Food Chem. 17, 863 (1969).CrossRefGoogle Scholar
  32. Yamaguchi, M., C. W. Chu, and S. F. Yang: The fate of 14C (2-chloroethyl) phosphonic acid in summer squash, cucumber, and tomato. J. Amer. Soc. Hort. Sci. 96, 606 (1971).Google Scholar
  33. Yang, S. F.: Ethylene evolution from 2-chloroethylphosphonic acid. Plant Physiol. 44, 1203 (1969).PubMedCrossRefGoogle Scholar
  34. Zeleznick, L. D., T. C. Myers, and E. B. Titchener: Growth of Escherichia coli on methyl- and ethylphosphonic acids. Biochem. Biophys. Acta 78. 546 (1963).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Julius J. Menn
    • 1
  • J. Bruce McBain
    • 1
  1. 1.Stauffer Chemical Co.Agricultural Research CenterMountain ViewUSA

Personalised recommendations