Skip to main content

Mechanisms of Carbon Dioxide and pH Effects on Metabolism

  • Conference paper

Part of the book series: Topics In Environmental Physiology And Medicine ((TEPHY))

Abstract

The physiological effects of acidemia are well established. It depresses the functional activity of all vital organs. The cardiovascular system is primarily affected (CLOWES et al. [1961]). Both cardiac conduction and the contractile force of the myocardium are depressed and there is vasodilatation in the peripheral circulation and cerebral vessels. By contrast, vasoconstriction develops in the lung vasculature. In the liver enzymatic activity is generally depressed. Acidemia has a thromboplastic effect and increases coagulation, contributing to intravascular clotting, as described by Hardaway [1966].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ashmore, J., Cahill, G. F. Jr., Hastings, A. B., and Zottu, S., “Studies on carbohydrate metabolism in rat liver slices. VIII. Effect of ions and hormones on pathway of glucoses-6-phosphate metabolism.” J. Biol. Chem., 224:225–35 (1957).

    PubMed  CAS  Google Scholar 

  • Bessis, M., In Cellular Injury. Ciba Foundation Symposium. (Boston: Little Brown, 1963), p. 287.

    Google Scholar 

  • Bryant, R. E., Desprez, R. M., Vanway, M. H., and Rogers, D. E., “Studies on human leukocyte motility.” J. Exp. Med., 124:483–99 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Burget, G. E. and Visscher, M. B., “Variations of of blood and the response of the vascular system to adrenalin.” Amer. J. Physiol., 81: 113–23 (1927).

    CAS  Google Scholar 

  • Bygrave, F. L., “The ionic environment and metabolic control.” Nature, (London), 214: 667–71 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Clowes, G. H. A. Jr., Sabga, G. A., Konitaxis, A., Tomin, R., Hughes, M., and Simeone, F. A., “Effects of acidosis on cardiovascular function in surgical patients.” Ann. Surg., 154:524–55 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Comandon, J., “Influence de la temperature sur la reptation leukocytaire.” C. R. Soc. Biol, 82: 1305 (1914).

    Google Scholar 

  • Delcher, H. K. and Shipp, J. C., “Effect of pH, pCO2 and bicarbonate on metabolism of glucose by perfused rat heart.” Biochim. biophys. Acta (Amsterdam), 121:250–60 (1966).

    CAS  Google Scholar 

  • Euler, U. S. V. and Lishajko, F., “Influence of on uptake and release of noradrenaline in adrenergic nerve granules.” J. Neurochem., 10:145–49 (1963).

    Article  Google Scholar 

  • Fenn, W. O., “Leukocyte motility and Qi0.” J. Gen. Physiol, 4:331 (1922).

    Article  PubMed  CAS  Google Scholar 

  • Fenn, W. O., and Asano, T., “Effects of carbon dioxide inhalation on potassium liberation from the liver.” Amer. J. Physiol, 185: 567–76 (1956).

    PubMed  CAS  Google Scholar 

  • Fenn, W. O., and Cobb, D. M., “The potassium equilibrium in muscle.” J. Gen. Physiol, 17:629–56 (1934).

    Article  PubMed  CAS  Google Scholar 

  • Geevers, W. and Dowdle, E., “The effect of on glycolysis in vitro.” Clin. Sci., 25:343–49 (1963).

    Google Scholar 

  • Hardaway, R. M. III, Syndromes of disseminated intravascular coagulation. Springfield, III.: Thomas, 1966.

    Google Scholar 

  • Jerusalem, E. and Starling, E. H., “On the significance of carbon dioxide for the heartbeat.” J. Physiol, 40:279–94 (1910).

    PubMed  CAS  Google Scholar 

  • Lennon, J. F., “Mesure et contrôle de la température des préparations sous microscope.” C. R. Soc. Biol, 164:1433–1937 (1933–37).

    Google Scholar 

  • Lotspeich, W. D., “Metabolic aspects of acid-base change. Interrelated biochemical responses, in the kidney and other organs, are associated with metabolic acidosis.” Science, 155:1066–75 (1967).

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon, M., “The effects of temperature on the rate of locomotion of human neutrophilic leukocytes in vitro.” Am. J. Physiol, 66:185 (1923).

    Google Scholar 

  • Mittelman, A., Dos, S. J., Barker, H. G., and Nahas, G. G., “Adrenal-cortical response during corrected and uncorrected hypercapnic acidosis.” Amer. J. Physiol, 202: 334–36 (1962).

    PubMed  CAS  Google Scholar 

  • Murphy, J. R., “Erythrocyte metabolism. II. Glucose metabolism and pathways.” J. Lab. Clin. Med., 55:286–302 (1960).

    PubMed  CAS  Google Scholar 

  • Nahas, G. G. and Cavert, H. M., “Cardiac depressant effect of CO2 and its reversal.” Amer. J. Physiol, 190:483–91.

    Google Scholar 

  • Nahas, G. G. and Cavert, H. M., Ligou, J. C., and Mehlman, B., “Effects of pH changes on O2 uptake and plasma catecholamine levels in the dog.” Amer. J. Physiol, 198:60–66 (1960).

    CAS  Google Scholar 

  • Nahas, G. G. and Cavert, H. M., and Poyart, C., “Effect of arterial alterations on metabolic activity of norepinephrine.” Amer. J. Physiol., 212:765–72 (1967).

    PubMed  CAS  Google Scholar 

  • Nahas, G. G. and Cavert, H. M., and Steinsland, O. S. “Increased rate of catecholamine synthesis during respiratory acidosis.” Resp. Physiol, 5:108–17 (1968).

    Article  CAS  Google Scholar 

  • Nahas, G. G. and Cavert, H. M., Tannieres, M. L., and Lennon, J. F., “Direct measurement of leukocyte motility: Effects of and temperature.” Proc. Soc. Exp. Biol Med., 138:350–52 (1971).

    PubMed  CAS  Google Scholar 

  • Nahas, G. G. and Cavert, H. M., Zagury, D., Milhaud, A., Manger, W. M., and Pappas, G. D., “Acidemia and catecholamine output of the isolated canine adrenal gland.” Amer. J. Physiol, 213:1186–92 (1967).

    PubMed  CAS  Google Scholar 

  • Pitts, R. F. and Mast, S. O., “Relation between inorganic salt concentration [H+] and physiological process in amoeba Proteus.” J. Cell Comp. Physiol, 3:449–62 (1933).

    Article  CAS  Google Scholar 

  • Poyart, C. and Nahas, G. G., “Inhibition of catecholamine-induced calorigenesis and lipolysis by hypercapnic acidosis.” Amer. J. Physiol, 211:161–68 (1966).

    PubMed  CAS  Google Scholar 

  • Poyart, C. and Nahas, G. G., “Inhibition of activated lipolysis by acidosis.” Molec. Pharmacol., 4:389–401 (1968).

    CAS  Google Scholar 

  • Reynolds, R. C. and Haugaard, N., “The effect of variations of upon the activation of phosphorylase by epinephrine in perfused contracting heart, liver slices and skeletal muscle.” J. Pharmacol Exp. Ther., 156: 417–25 (1967).

    PubMed  CAS  Google Scholar 

  • Schaefer, K. E., King, C. T. G., Mego, J. L., and Williams, E. E., “Effect of a narcotic level of CO2 on adrenal cortical activity and carbohydrate metabolism.” Amer. J. Physiol, 183:53–62 (1955).

    PubMed  CAS  Google Scholar 

  • Stadie, W. C., Haugaard, N., and Perlmutter, M., “The synthesis of glycogen by rat heart slices.” J. Biol Chem., 171:419–29 (1947).

    CAS  Google Scholar 

  • Steinberg, D., Nestel, P. J., Buskirk, E. R., and Thompson, R. H., “Calorigenic effect of norepinephrine correlated with plasma free fatty acid turnover and oxidation.” J. Clin. Invest., 43:167–76 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Tenney, S. M., “Sympathoadrenal stimulation by carbon dioxide and the inhibitory effect of carbonic acid on epinephrine response.” Amer. J. Physiol, 187:341–46 (1956).

    PubMed  CAS  Google Scholar 

  • Triner, L., Kypson, J., Mroz, M., and Zicha, B., “The influence of acidosis on the utilization of glucose by the red blood cells in shock.” Med. Exp. (Basel), 10:103–10 (1964).

    Article  CAS  Google Scholar 

  • Triner, L., Kypson, J., Mroz, M., and Zicha, B., and Nahas, G. G., “Acidosis: effect on lipolytic activity of norepinephrine in isolated fat cells.” Science, 150:1725–27 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Trivedi, B. and Danforth, W. H., “Effect of on the kinetics of frog muscle phosphor-fructokinase.” J. Biol Chem., 241:4110–12 (1966).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag New York Inc.

About this paper

Cite this paper

Nahas, G.G. (1974). Mechanisms of Carbon Dioxide and pH Effects on Metabolism. In: Nahas, G., Schaefer, K.E. (eds) Carbon Dioxide and Metabolic Regulations. Topics In Environmental Physiology And Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9831-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9831-1_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9833-5

  • Online ISBN: 978-1-4612-9831-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics