Skip to main content

Gas Exchange and Evaporation Studies in a Circular Wind Tunnel, Continuous Radon-222 Measurements at Sea, and Tritium/Helium-3 Measurements in a Lake

  • Chapter
Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction

Abstract

This paper reports on gas exchange research activities pursued at this laboratory, with the aim of increasing present knowledge on gas exchange and on the parameters which control it. Laboratory (wind tunnel) experiments as well as field work (with Rn-222 and He-3) are under way. — Two of the present authors (K.O.M. and D, F.) have previously presented [l] a theoretical treatment of the problem. Another, more detailed recent publication by Deacon [2] draws similar conclusions. The most important factor controlling gas exchange is wind speed; at low wind, however, surface cooling by evaporation is also to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.O. Münnich, D. Flothmann, Gas exchange in relation to other air/sea interaction phenomena, SCOR Workshop on “Air/Sea Interaction Phenomena” Miami 8–12 Dec 1975 (Background Papers, prepared for the Ocean Sciences Board, Natl. Res. Council, Wash. D.C. 1977)

    Google Scholar 

  2. E.L. Deacon, Gas transfer to and across an air-water interface, Tellus 29 (1977) 363–374

    Article  ADS  Google Scholar 

  3. H.J. Vogt, Isotopentrennung bei der Verdunstung von Wasser, Staatsexamensarbeit, Institut für Umweltphysik, Heidelberg 1976

    Google Scholar 

  4. T. Laevastu, I. Clarke, P.M. Wolff, Oceanic part of the water cycle, WMO Report No. 11, Geneva 1969

    Google Scholar 

  5. L. Merlivat, M. Coantic, Study of mass transfer at the air-water interface by an isotopie method, J. Geophys. Res. 80 (1975) 3455–3464

    Article  ADS  Google Scholar 

  6. D. Ehhalt, K. Knott, Kinetische Isotopentrennung bei der Verdampfung von Wasser, Tellus 17 (1965) 389–397

    Article  ADS  Google Scholar 

  7. J.R. Gat, Environmental isotope balance of Lake Tiberias, in: “Isotope Hydrology 1970”, IAEA Vienna 1970, pp. 109–127

    Google Scholar 

  8. U. Siegenthaler, Kinetische Isotopentrennung und Gasaustausch bei der Verdunstung von Wasser, Schlußbericht Schweizer Nationalfonds-Stipendium 1974 (manuscript)

    Google Scholar 

  9. P.S. Liss, Processes of gas exchange across an air-water interface, Deep Sea Res, 20 (1973) 221–238

    Google Scholar 

  10. W.S. Broecker, T.H. Peng, Gas exchange rates between air and sea, Tellus 26 (1974) 21–35

    Article  ADS  Google Scholar 

  11. E. Lohse, Bestimmung der Evasionsgeschwindigkeit von C02 aus Wasser, Staatsexamensarbeit, Institut für Umweltphysik, Heidelberg, 1977

    Google Scholar 

  12. S. Emerson, Radium-226 and radon-222 as limnological tracers: The CO2 gas exchange rate; thesis, Columbia Univ., Lamont, N.Y.

    Google Scholar 

  13. W. Roether, B. Kromer, Field determination of air-sea gas exchange by continuous measurement of radon-222, Pure Appl. Geophys. 1977 (in press)

    Google Scholar 

  14. W. Weiss, H. Lehn, K.H. Fischer, W.B. Clarke, Z. Top, B. Kromer, W. Roether, Gas exchange and internal mixing of Lake Constance, Verh. Ges.Ökologie, Kiel, September 1977

    Google Scholar 

  15. R. Mühleisen, Starkwinde an und auf dem Bodensee, Meteorologische Rundschau 30 (1977) 15–22

    Google Scholar 

  16. CHR. Bohr, Die Löslichkeit der Kohlensäure in Alkohol zwischen-67º und +45º C. In- und Evasionscoefficient bei 0º; Annalen der Physik 1 (1900) 244–256

    Article  ADS  Google Scholar 

  17. G. Meyer, Konstruktion einer Temperatursonde zur Messung von Temperaturprofilen in der Grenzschicht Wasser/Luft, Staatsexamensarbeit, Institut für Umweltphysik, Heidelberg 1977

    Google Scholar 

  18. K.B. Katsaros, The sea surface temperature deviation at very low wind speeds; is there a limit?, Tellus 29 (1977) 229–239

    Article  ADS  Google Scholar 

  19. W.B. Clarke, W.J. Jenkins, Z. Top, Determination of tritium by mass spectrometric measurement of He-3, Int.J. Appl. Radiat. Isotopes 27 (1976) 515

    Article  Google Scholar 

  20. T. Torgersen, Z. Top, W.B. Clarke, W.J. Jenkins, W.S. Broecker, A new method for physical limnology; tritium/helium-3 ages; results for Lakes Erie, Huron, and Ontario, Limnol. Oceanogr. 22 (1977) 181–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Münnich, K.O. et al. (1978). Gas Exchange and Evaporation Studies in a Circular Wind Tunnel, Continuous Radon-222 Measurements at Sea, and Tritium/Helium-3 Measurements in a Lake. In: Favre, A., Hasselmann, K. (eds) Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4612-9806-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9806-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9808-3

  • Online ISBN: 978-1-4612-9806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics