Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 8))

Abstract

In this section we give a more precise characterization of trajectories which are solutions of an integrable system. We start from Liouville’s result. Given a Hamiltonian System

$$\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{{{\dot{y}}}_{k}} = + {{H}_{{{{x}_{k}}}}},} \\ {{{{\dot{x}}}_{k}} = - {{H}_{{{{y}_{k}}}}},} \\ \end{array} } & {(k = 1,2,. .,n)} \\ \end{array}$$
(3.1.1)

let H = H(y;x) be analytic in a given domain D of the phase space. If n uniform integrals F1, F2,...,Fn, in involution, are known, in a domain D’ ⊂ D, then in D’ the system is integrable, i.e., reducible to quadratures. Let

$$ {F_i}(y;x) = {C_i} = {\text{const}} $$
(3.1.2)

for i = 1,2,...,n. In general one verifies that the closed manifolds generated by Eqs. (3.1.2.) are tori and, on these, the motion is quasiperiodic. One can actually show that this is so, in general, for a Liouville system. More precisely, the following theorem (Arnol’d, 1963) can be stated. “Let the system (3.1.1.), with n degrees of freedom, have n first uniform integrals F1,...,Fn in involution. The equations Fi = Ci define a compact manifold M = MC in very point of which the vectors grad Fi (i = 1,2,...,n) are linearly independent in the phase space of dimensions 2n. Then M is a torus of dimension n and the point (y(t); x(t)), solution of (3.1.1) in D’, has a quasiperiodic motion on M.” This theorem justi fies the fact that we always consider intergrable systems as given by a Hamiltonian H = HO(x), a function of the momenta only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnol’d, V. I., 1961, “On the Stability of Positions of Equilibrium of a Hamiltonian System in the General Elliptic Case”, Dokl. Akad. Nauk 137, 255–257.

    Google Scholar 

  2. —, 1961, “On the Generation of a Quasi-periodic Motion from a Set of Periodic Motions”, Dokl. Akad. Nauk 138, 13–15.

    Google Scholar 

  3. —, 1961, “Small Denominators I. Mapping the Circle onto Itself”, Izv. Akad. Nauk USSR, Ser. Mat. 25, 21–86.

    Google Scholar 

  4. —, 1962, “On the Classical Theory of Perturbations and the Problem of Stability of Planetary Systems”, Dokl. Akad. Nauk 145, 487–490.

    Google Scholar 

  5. —, 1963, “A Theorem of Liouville Concerning Integrable Problems of Dynamics”, Sibirsk. Mat. Zh. 4, 471–474.

    MATH  Google Scholar 

  6. —, 1963, “Proof of A. N. Kolmogorov’s Theorem on the Preservation of Quasi-Periodic Motions under Small Perturbations of the Hamiltonian”, Uspekhi Mat Nauk USSR, l8, 13–40.

    Google Scholar 

  7. —, 1963, “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics”, Uspekhi Mat. Nauk USSR 18, 91–192.

    Google Scholar 

  8. Barrar, R. B., 1966, “Existence of Conditionally Periodic Orbits for the Motion of a Satellite Around an Oblate Planet”, Q. of Appl. Math., 24, 47–55.

    MathSciNet  MATH  Google Scholar 

  9. —, 1966, “A Proof of the Convergence of the Poincaré-von Zeipel Procedure in Celestial Mechanics”, Am. J. Math., 88, 206–220.

    Article  MathSciNet  MATH  Google Scholar 

  10. —, 1970, “Convergence of the von Zeipel Procedure”, Cel. Mech., 2, 494–504.

    Article  MathSciNet  MATH  Google Scholar 

  11. Birkhoff, G. D., 1927, “Dynamical Systems”, Am. Math. Soc. Colloq. Publ. IX, Providence, R. I.

    MATH  Google Scholar 

  12. Bogoliubov, N. N., 1945, “On Some Statistical Methods in Mathematical Physics”, Izv. Akad. Nauk USSR Publ., Moscow.

    Google Scholar 

  13. —., 1963, “On Quasi-Periodic Solutions in Nonlinear Problems of Mechanics” Publ. Akad. Nauk Ukrain. SSR, Karev.

    Google Scholar 

  14. Brouwer, D. and Clemence, G. M., 1961, “Methods of Celestial Mechanics”, Acad. Press, New York.

    Google Scholar 

  15. Brown, E. W., 1896, “An Introductory Treatise on the Lunar Theory”, Cambridge Univ. Press, London (Dover re-public., 1960).

    MATH  Google Scholar 

  16. Cesari, L., 1940, “Sulla Stabilitá delle Soluzioni dei Sistemi di Equazioni Differenziali Lineari a Coefficienti Periodici”, Atti Accad. Ital. Mem. Classe Fis. Mat. Nat. 11, 633–692.

    MathSciNet  Google Scholar 

  17. Deprit, A. and Deprit-Bartholomé, A., 1967, “Stability of the Triangular Lagrangian Points”, Astron. J., 72, 173–179.

    Article  Google Scholar 

  18. Gambill, R. A., “Criteria for Parametric Instability for Linear Differential Systems with Periodic Coefficients”, Riv. Mat. Univ. Parma, 5, 169–181 (1954).

    MathSciNet  MATH  Google Scholar 

  19. Gelfand, I. M. and Lidskii, V. B., 1958, “On the Structure of the Regions of Stability of Linear Canonical Systems of Differential Equations with Periodic Coefficients”, Am. Math. Soc. Transl. (2), 8, 143–182.

    MathSciNet  Google Scholar 

  20. Giacaglia, G. E. O., 1968, “Transformation of Hill’s Equation — A Method of Solution”, Astron. J., 72, 998–1001.

    Article  MathSciNet  Google Scholar 

  21. Hale, J. K., 1958, “Sufficient Conditions for the Existence of Periodic Solutions of First and Second Order Differential Equations”, J. Math. Mech., 7, 163–172.

    MathSciNet  MATH  Google Scholar 

  22. Kantorovich, L. V., 1948, “Functional Analysis and Applied Mathematics”, Uspekhi Mat. Nauk USSR, 3, 89–185.

    MATH  Google Scholar 

  23. Khinchin, A. Ya., 1935, “Continued Fractions”, O.N.T.I., Moscow.

    Google Scholar 

  24. Koksma, J. F., 1936, “Diophantische Approximationen”, Springer-Verlag, Berlin.

    Google Scholar 

  25. Kolmogorov, A. N., 1954, “General Theory of Dynamical Systems and Classical Mechanics”, Proc. Int. Cong. Math. Amsterdam, 1, 315–333 (Noordhoff, 1957).

    Google Scholar 

  26. Krylov, N. and Bogoliubov, N. N., 1947, “Introduction to Nonlinear Mechanics”, Ann. Math. Stud., 11, Princeton Univ. Press, Princeton.

    Google Scholar 

  27. Leontovich, A. M., 1962, “On the Stability of the Lagrangian Periodic Solutions of the Restricted Three-Body Problem”, Dokl. Akad. Nauk USSR 143, 525–528.

    Google Scholar 

  28. Mitropolski, J. A., 1966, “Problems in the Asymptotic Theory of Non-Stationary Oscillations”, Gautnier-Villars, Paris.

    Google Scholar 

  29. Moser, J., 1956, “The Resonance Lines for the Synchroton”, Proceed. CERN Symp. Geneva, 290–292.

    Google Scholar 

  30. —, 1965, “Combination Tones for Duffing’s Equation”, Comm. Pure Appl. Math., 43, 167–181.

    Article  Google Scholar 

  31. —, 1965, “The Stability Behavior of the Solution of Hamiltonian Systems”, Lecture Notes, S.I.D.A.

    Google Scholar 

  32. —, 1958, “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 2, 8l–114.

    Google Scholar 

  33. —, 1962, “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1–20.

    Google Scholar 

  34. Moser, J., 1966, “On the Theory of Quasi-Periodic Motions”, SIAM Rev., 8, 145–172.

    Article  MathSciNet  MATH  Google Scholar 

  35. Moser, J., 1967, “Convergent Series Expansions of Quasi-Periodic Motions”, Math. Ann., 169, 136–176.

    Article  MathSciNet  MATH  Google Scholar 

  36. Moser, J., 1961, “A New Technique for the Construction of Solutions of Nonlinear Differential Equations”, Proc. Nat. Acad. Sci., 47, 1824–1831.

    Article  MathSciNet  MATH  Google Scholar 

  37. Nash, J., 1956, “The Imbedding of Riemmanian Manifolds”, Ann. Math., 63, 20–63.

    Article  MathSciNet  MATH  Google Scholar 

  38. Rüsman, H., 1959, “Über die Existenz einer Normalform inhaltstreuer elliptischer Transformationen”, Math. Annalen, 137, 64–77.

    Article  Google Scholar 

  39. Siegel, C. L., 1941, “On the Integrals of Canonical Systems”, Ann. Math., 42, 806–822.

    Article  Google Scholar 

  40. Siegel, C. L., 1954, “Über die Existenz einer Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung”, Math. Ann., 128, 144–170.

    Article  MathSciNet  MATH  Google Scholar 

  41. Siegel, C. L., 1956, “Vorlesungen über Himmelsmechanik”, Springer-Verlag, Berlin.

    Google Scholar 

  42. Pol, B. van der, 1926–27, “Forced Oscillations in a Circuit with Nonlinear Resistance”, Phil. Mag., 2, 21–27

    Google Scholar 

  43. Pol, B. van der, 1926–27, “Forced Oscillations in a Circuit with Nonlinear Resistance”, Phil. Mag., 3, 65–80.

    Google Scholar 

  44. Whittaker, E. T., 1937, “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”, Cambridge, Univ. Press, London.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Giacaglia, G.E.O. (1972). Perturbations of Integrable Systems. In: Perturbation Methods in Non-Linear Systems. Applied Mathematical Sciences, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6400-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6400-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90054-4

  • Online ISBN: 978-1-4612-6400-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics