Perturbation Methods for Hamiltonian Systems. Generalizations

  • Georgio Eugenio Oscare Giacaglia
Part of the Applied Mathematical Sciences book series (AMS, volume 8)

Abstract

This chapter is devoted to two main goals. First introduce the reader to known methods of canonical perturbations, describe them in a heuristic way and give examples so as to motivate the theorems presented in Chapters III and IV. Second, present some basic results about iterative procedures of fundamental importance on methods of averaging. Major contributors to this area are Lindstedt (1884), Poincaré (1893), Whittaker (1916), Siegel (1941), Krylov (1947), Bogoliubov (1945), Kolmogorov (1953), Arnol’d (1963), Diliberto (1961), Pliss (1966), Kyner (1961), Moser (1962), Hale (1961) with several overlappings in results. Many of these results have been unified and consolidated in celebrated books by Siegel (1956), Wintner (1947), Newytskii-Stepanov (1960), Cesari (1963), Hale (1969), Abraham (1967), Birkhoff (1927), Bogoliubov-Mitropolskii (1961), Lefschetz (1959), Minorsky (1962), Sansone-Conti (1964), Sternberg (1970).

Keywords

Manifold Aires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, R., 1967, “Foundations of Mechanics”, W. A. Benjamin, Inc., Philadelphia.MATHGoogle Scholar
  2. 2.
    Andoyer, H., 1926, “Cours de Mécanique Célèste”, (Vol. I), Gauthier-Villars, Paris.MATHGoogle Scholar
  3. 3.
    Arnol’d, V. I., 1963, “Proof of A. N. Kolmogorov’s Theorem on the Conservation of Quasiperiodic Motions under Small Perturbations of the Hamiltonian”, Uspekhi Mat. Nauk USSR, 18, 13–40.Google Scholar
  4. 4.
    Arnol’d, V. I., 1963? “Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics”, Uspekhi Mat. Nauk USSR, 18, 91–192.Google Scholar
  5. 5.
    Barbanis, B., 1966, “The Topology of the Third Integral”, Intern. Astrom. Union Symp. No. 25, pp. 19–25, Academic Press, New York.Google Scholar
  6. 6.
    Birkhoff, G. D., 1927, “Dynamical Systems”, Am. Math. Soc. Colloq. Public. IX, Providence, Rhode Island.MATHGoogle Scholar
  7. 7.
    Bogoliubov, N. N., 1945, “On some statistical methods in mathematical physics”, (Paper) Izv. Akad. Nauk USSR, Moscow.Google Scholar
  8. 8.
    Bogoliubov, N. N. and Mitropolskii, Y. A., 1951, “Asymptotic Methods in the Theory of Nonlinear Oscillations”, Gordon and Breach, New York.Google Scholar
  9. 9.
    Bozis, G., 1966, “A New Integral in the Restricted Problem of Three Bodies”, Doctoral Thesis, Univ. of Thessaloniki, Greece.Google Scholar
  10. 10.
    Bozis, G., 1966, “On the Existence of a New Integral in the Restricted Three-Body Problem”, Astron. J., 71, 404–414.CrossRefGoogle Scholar
  11. 11.
    Brouwer, D., 1959, “Solution of the Problem of Artificial Satellites without Drag”, Astron. J., 64, 378–390.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Brouwer, D. and Clemence, G. M., 1961, “Methods of Celestial Mechanics”, Academic Press, New York.Google Scholar
  13. 13.
    Caley, A., 1848, Comb. Dublin Math. J., 3, 116.Google Scholar
  14. 14.
    Cesari, L., 1940, “Sulla Stabilità delle Soluzioni dei Sistemi di Equazioni Differenziali Lineari a Coefficienti Periodici”, Atti Accad. Ital. Mem. Classe Fis. Mat. e Nat., 11, 633–692.MathSciNetGoogle Scholar
  15. 15.
    Cesari, L., 1963, “Asymptotic Behavior and Stability Problems in Ordinary Differential Equations”, Springer-Verlag New York Inc., New York.MATHGoogle Scholar
  16. 16.
    Choi, J. S. and Tapley, B. D., 1972, “An Extended Canonical Perturbation Method”, Cel. Mech. (to appear).Google Scholar
  17. 17.
    Contopoulos, G., 1960, “A Third Integral of Motion in a Galaxy”, Zeits. fur Astrophys., 49, 273–291.MATHMathSciNetGoogle Scholar
  18. 18.
    Contopoulos, G. and Barbanis, B., 1961, “An Application of the Third Integral of Motion”, The Observatory, 82, 80–82.Google Scholar
  19. 19.
    Contopoulos, G., 1962, “On the Existence of a Third Integral”, Astron. J., 68, 1–14.CrossRefMathSciNetGoogle Scholar
  20. 20.
    Contopoulos, G., 1963, “A Classification of the Integrals of Motion”, Astrophys. J., 138, 1297–1305.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Contopoulos, G., 1963, “Resonances Cases and Small Divisors in a Third Integral of Motion. I”, Astron. J., 68,Google Scholar
  22. 22.
    Contopoulos, G. and Woltjer, L., 1964, “The Third Integral in Non-Smooth Potentials”, Astrophys. J., 140, 1106–1119.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Contopoulos, G., 1965, “The Third Integral in the Restricted Three-Body Problem”, Astrophys. J., 142, 802–804.MATHCrossRefGoogle Scholar
  24. 24.
    Contopoulos, G., 1966, “Adiabatic Invariants and the Third Integral”, J. Math. Phys., 7, 788–797.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Contopoulos, G. and Hadjidemetrious, J. P., 1968, “Characteristics of Invariant Curves of Plane Orbits”, Astron. J., 73, 86–96.CrossRefGoogle Scholar
  26. 26.
    Contopoulos, G., 1970, “Resonance Phenomena in Spiral Galaxies”, in “Periodic Orbits, Stability and Resonances” (Ed. G. E. O. Giacaglia), D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  27. 27.
    Contopoulos, G., “Orbits in Highly Perturbed Dynamical Systems”, I (1970), Astron. J., 75, 96–107;CrossRefMathSciNetGoogle Scholar
  28. 27a.
    II(1970), Astron. J., 75, 108–130;CrossRefMathSciNetGoogle Scholar
  29. 27b.
    III(1971), Astron. J., 76, 147–156.CrossRefMathSciNetGoogle Scholar
  30. 28.
    Deprit, A. et. al., 1969, “Birkhoff’s Normalization”, Cel. Mech., 1, 222–251.MATHCrossRefMathSciNetGoogle Scholar
  31. 29.
    Deprit, A. et. al., 1970, “Analytical Lunar Ephermeris: Brouwer’s Suggestion”, Astron. J., 75, 747–750.CrossRefGoogle Scholar
  32. 30.
    Deprit, A. and Rom, A., 1970, “Characteristic Exponents of L4 in the Elliptic Restricted Problem”, Astron. Astrophys., 5, 416–428.MATHMathSciNetGoogle Scholar
  33. 31.
    Deprit, A. and Rom, A., 1970, “The Main Problem of Artificial Sattelite Theory for Small and Moderate Eccentricities”, Cel. Mech., 2, 166–206.MATHCrossRefMathSciNetGoogle Scholar
  34. 32.
    Diliberto, S. P., 1967, “New Results on Periodic Surfaces and the Averaging Principle”, U.S.-Japanese Sem. on Diff. Funct. Eq., pp. 49–87, Benjamin, Philadelphia.Google Scholar
  35. 33.
    Dirac, P. A. M., 1958, “Generalized Hamiltonian Dynamics”, Proc. Roy. Soc. London A246, 326–332.MathSciNetGoogle Scholar
  36. 34.
    Euler, L., 1753, “Theoria Motus Lunae” and 1772, “Theoria Motus Lunae, Novo Methodo”, Petropoli, Typ. Acad. Imp. Scient.Google Scholar
  37. 35.
    Gelfand, I. M. and Lidskii, U. B., 1958, “On the Structure of the Regions of Stability of Linear Canonical Systems of Differential Equations with Periodic Coefficients”, Am. Math. Soc. Transi. (2), 8, 143–182.MathSciNetGoogle Scholar
  38. 36.
    Giacaglia, G. E. O., 1964, “Notes on von Zeipel’s Method”, GSFC-NASA Publ. X-547-64-161.Google Scholar
  39. 37.
    Giacaglia, G. E. O., 1965, Evaluation of Methods of Integration by Series in Celestial Mechanics”, Doctoral Thesis, Yale University, New Haven.Google Scholar
  40. 38.
    Giacaglia, G. E. O., 1967, “Nonintegrable Dynamical Systems”, Chair Thesis, General Mechanics, Univ. of Sao Paulo, Sao Paulo.Google Scholar
  41. 39.
    Giacaglia, G. E. O., et al., 1970, “A Semi-Analytic Theory for the Motion of a Lunar Satellite”, Cel. Mech., 3, 3–66.MATHCrossRefMathSciNetGoogle Scholar
  42. 40.
    Giacaglia, G. E. O. and Jefferys, W. H., 1971, “Motion of a Space Station”, Cel. Mech. 4, 442–467.MATHCrossRefGoogle Scholar
  43. 41.
    Giacaglia, G. E. O., 1971, “Characteristic Exponents at L4 and L5 in the Elliptic Restricted Problem of Three Bodies”, Cel. Mech., 4, 468–489.MATHCrossRefMathSciNetGoogle Scholar
  44. 42.
    Giacaglia, G. E. O., 1972, “Regularization of Conservative Central Fields”, Public. Astron. Soc. Japan, 24, No. 3, July.Google Scholar
  45. 43.
    Giacaglia, G. E. O. and Nuotio, V. I., 1972, “Spinor Regularization of Conservative Central Fields”, 3rd Annual Meeting, Div. Dynamical Astron., Am. Astron. Soc, Univ. of Maryland, In “Bull. Amer. Astron. Soc”, (to appear).Google Scholar
  46. 44.
    Goldstein, H., 1951, “Classical Mechanics”, Addison-Wesley, Reading, Massachusetts.MATHGoogle Scholar
  47. 45.
    Goursat, E., 1959? “Cours d’Analyse Mathematique”, 7th. Ed., Vol. 2, Gauthier-Villars, Paris. (Reprinted by Dover Publ., New York).Google Scholar
  48. 46.
    Hale, J. K., 1954, “On the Boundedness of the Solution of Linear Differential Systems with Periodic Coefficients”, Riv. Mat. Univ. Parma, 5, 137–167.MATHMathSciNetGoogle Scholar
  49. 47.
    Hale, J. K., 1961, “Integral Manifolds of Perturbed Differential Equations”, Ann. Math., 73, 496–531.MATHCrossRefMathSciNetGoogle Scholar
  50. 48.
    Hale, J. K., 1962, “On Differential. Equations Containing a Small Parameter”, Contrib. Diff. Eq., Vol. 1, J. Wiley, New York (Ed. J. P. LaSalle et. al).Google Scholar
  51. 49.
    Hale, J. K., 1963, “Oscillations in Nonlinear Systems”, McGraw-Hill, New York.MATHGoogle Scholar
  52. 50.
    Hale, J. K., 1969, “Ordinary Differential Equations”, (Chapt. 5), Wiley-Interscience, New York.MATHGoogle Scholar
  53. 51.
    Henrand, J., 1970, “On a Perturbation Theory Using Lie Transforms”, Cel. Mech., 3, 107–120.CrossRefGoogle Scholar
  54. 52.
    Hènon, M. and Heiles, C., 1964, “The Applicability of the Third Integral of Motion; Some Numerical Experiments”, Astron. J., 69, 73–79.CrossRefGoogle Scholar
  55. 53.
    Hènon, M. and Heiles, C., 1945, “Exploration Numérique du Problème Restreint”, Ann. Astrophys., 28, 499Google Scholar
  56. 53a.
    Hènon, M. and Heiles, C., 1945, “Exploration Numérique du Problème Restreint”, Ann. Astrophys., 28, 992.Google Scholar
  57. 54.
    Hori, G., 1966, “Theory of General Perturbations with Unspecified Canonical Variables”, Public. Astron. Soc. Japan, 18, 287–296.Google Scholar
  58. 55.
    Hori, G., 1971, “Theory of General Perturbations for Noncanonical Systems”, Publ. Astron. Soc. Japan, 23, 567–587.Google Scholar
  59. 56.
    Kamel, A. A., 1969? “Expansion Formulae in Canonical Transformations Depending on a Small Parameter”, Cel. Mech., 1, 190–199.MATHCrossRefMathSciNetGoogle Scholar
  60. 57.
    Kamel, A. A., 1970, “Perturbation Method in the Theory of Nonlinear Oscillations”, Cel. Mech., 3, 90–106.MATHCrossRefMathSciNetGoogle Scholar
  61. 58.
    Kevorkian, J., 1966, “The Two Variable Expansion Procedure for the Approximate Solution of Certain Nonlinear Differential Equations” in “Lectures in Applied Mathematics”, vol. 7, p. 206, Amer. Math. Soc, Providence, R. I.Google Scholar
  62. 59.
    Kolmogorov, A. N., 1953, “On the Conservation of Quasiperiodic Motions for a Small change in the Hamiltonian Function”, Dokl. Akad. Nauk USSR, 98, 527–530.MathSciNetGoogle Scholar
  63. 60.
    Kovalevsky, J., 1968, “Review of Some Methods of Programming of Literal Developments in Celestial Mechanics”, Astron. J., 73, 203–209.CrossRefGoogle Scholar
  64. 61.
    Krylov, N. and Bogoliubov, N. N., 1947, “Introduction to Nonlinear Mechanics”, Ann. Math. Stud., 11, Princeton. Univ. Press, Princeton, New Jersey.Google Scholar
  65. 62.
    Kustaanheimo, P., 1964, “Spinor Regularization of Kepler Motion”, Ann. Univ. Turkuensis, A73, 3–7.MathSciNetGoogle Scholar
  66. 63.
    Kyner, W. T., 1961, “invariant Manifolds”, Rend. Circ. Mat. Palermo, 10, 98–110.CrossRefMathSciNetGoogle Scholar
  67. 64.
    Kyner, W. T., 1963, “A Mathematical Theory of the Orbits about an Oblate Planet”, Tech. Rep. to ONR, Det. Math., Univ. of Southern Calif., Los Angeles (51 pp.).Google Scholar
  68. 65.
    Kyner, W. T., 1968, “Rigorous and Formal Stability of Orbits about an Oblate Planet”, Mem. Amer. Math. Soc, 81, 1–27.MathSciNetGoogle Scholar
  69. 66.
    Laricheva, V. V., 1966, “On Averaging a Certain Class of Systems of Nonlinear Differential Equations”, Diff. Equa., 2, No. 1, 169–173.Google Scholar
  70. 67.
    Lefschetz, S., 1959, “Differential Equations. Geometric Theory”, Interscience, New York.Google Scholar
  71. 68.
    Leimanis, E. and Minorsky, N., 1958, “Dynamics and Nonlinear Mechanics”, (Ch. I), J. Wiley, New York.MATHGoogle Scholar
  72. 69.
    Levi-Civita, T., 1903, “Traiettorie Singolari ed Urti nel Problema Ristretto dei Tre Carpi”, Ann. Math., 9, 1–27.Google Scholar
  73. 70.
    Lindstedt, A., 1882, “Beitrag zur Integration der Differentialgleichungen der Störungtheorie”, Abh. K. Akad. Wiss. St. Petersburg, 31, No. 4.Google Scholar
  74. 71.
    MacMillan, W. D., 1912, “A Method of Determining Solutions of a System of Analytic Functions in the Neighborhood of a Branch Point”, Math. Annalen, 72, 180.MATHCrossRefGoogle Scholar
  75. 72.
    MacMillan, W. D., 1920, “Dynamics of Rigid Bodies”, Dover Publ., New York (pp. 403–413).Google Scholar
  76. 73.
    Mersman, W. A., 1971, “Explicit Recursive Algorithms for the Construction of Equivalent Canonical Transformations”, Cel. Mech., 3, 384–389.MATHCrossRefMathSciNetGoogle Scholar
  77. 74.
    Minorsky, N., 1962, “Nonlinear Oscillations”, van Nostrand, Princeton, New Jersey.MATHGoogle Scholar
  78. 75.
    Moser, J., 1955, “Nonexistence of Integrals for Canonical Systems of Differential Equations”, Comm. Pure Appl. Math., 8, 409–436.MATHCrossRefMathSciNetGoogle Scholar
  79. 76.
    Moser, J., 1958, “New Aspects in the Theory of Stability of Hamiltonian Systems”, Comm. Pure Appl. Math., 2, 81–114.CrossRefGoogle Scholar
  80. 77.
    Moser, J., 1961, “A New Technique for the Construction of Solutions of Nonlinear Differential Equations”, Proc. Nat. Acad. Sci., 47, 1824–1831.MATHCrossRefMathSciNetGoogle Scholar
  81. 78.
    Moser, J., 1962, “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, 1–20.Google Scholar
  82. 79.
    Moser, J., 1963, “Perturbation Theory for Almost Periodic Solutions for Undamped Nonlinear Differential Equations”, Int. Symp. on Nonlinear Diff. Eq. and Nonlinear Mech., Colorado Springs, 1961, Acad. Press, New York (pp. 71–79).Google Scholar
  83. 80.
    Moser, J., 1964, “Hamiltonian Systems”, Lecture Notes, New York Univ., New York.Google Scholar
  84. 81.
    Moser, J., 1966, “A Rapidly Convergent Iteration Method and Nonlinear Partial Differential Equations”, I, Ann. Scu. Norm. Sup. Pisa, 20, 265–315;Google Scholar
  85. 81a.
    Moser, J., 1966, “A Rapidly Convergent Iteration Method and Nonlinear Partial Differential Equations”, II, Ann. Scu. Norm. Sup. Pisa, 20, 499–533.Google Scholar
  86. 82.
    Moser, J., 1966, “On the Theory of Quasi-Periodic Motions”, SIAM Rev., 8, 145–172.MATHCrossRefMathSciNetGoogle Scholar
  87. 83.
    Moser, J., 1967, “Convergent Series Expansions of Quasi-Periodic Motions”, Math. Ann., 169, 136–176.MATHCrossRefMathSciNetGoogle Scholar
  88. 84.
    Moser, J., 1970, “Regularization of Kepler’s Problem and the Averaging Method on a Manifold”, Comm. Pure Appl. Math., 23, 609–636.MATHCrossRefMathSciNetGoogle Scholar
  89. 85.
    Moulton, F. R., 1913, “Periodic Oscillating Satellites”, Math. Ann., 73, 441–479.CrossRefMathSciNetGoogle Scholar
  90. 86.
    Moulton, F. R., 1920, “Periodic Orbits”, Carnegie Inst. Washington Publ., 161, Washington, D. C.Google Scholar
  91. 87.
    Musen, P., 1965, “On the high order effects in the Methods of Krylov-Bogoliubov and Poincaré”, J. Astronaut. Sci., 12, 129–134.Google Scholar
  92. 88.
    Nemitskii, V. V. and Stepanov, V. V., 1960, “Qualitative Theory of Differential Equations”, Princeton Univ. Press, Princeton, New Jersey.Google Scholar
  93. 89.
    Pliss, V. A., 1966, “On the Theory of Invariant Surfaces”, Diff. Eq., 2, 1139–1150.MathSciNetGoogle Scholar
  94. 90.
    Pliss, V. A., 1966, “Nonlocal Problems of the Theory of Oscillations”, Acad. Press, New York.MATHGoogle Scholar
  95. 91.
    Poincaré, H., 1893, “Les Méthodes Nouvelles de la Mécanique Céleste”, Vol. 2, Reprint by Dover Publ. New York (1957).MATHGoogle Scholar
  96. 92.
    Poincaré, H., 1899, “Les Methodes Novelles de la Mécanique Céleste”, (Vol. 3), Gauthier-Viliars, Paris (Dover Publ. Reprint, New York).Google Scholar
  97. 93.
    Poincaré, H., 1909, “Léçons de Mécanique Céleste”, (Vol. 2), Gauthier-Villars, Paris.MATHGoogle Scholar
  98. 94.
    Roels, J. and Louterman, G., 1970, “Normalization des Systèmes Linèaires Canoniques et Application au Problème Restreinte des Trois Corps”, Cel. Mech., 3, 129–140.MATHCrossRefMathSciNetGoogle Scholar
  99. 95.
    Sansone, G. and Conti, R., 1964, “Nonlinear Differential Equations”, Pergamon Press, New York.Google Scholar
  100. 96.
    Siegel, C. L., 1941, “On the Integrals of Canonical Systems”, Ann. Math. 42, 806–822.CrossRefGoogle Scholar
  101. 97.
    Siegel, C. L., 1954, “Über die Existenz einer Normal form analytischer Hamiitonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung” Math. Am., 128, 144–170.MATHGoogle Scholar
  102. 98.
    Siegel, C. L., 1956, “Vorlesungen über Himmelsmechanik”, Springer-Verlag, Berlin.Google Scholar
  103. 99.
    Sternberg, S., 1969, “Celestial Mechanics”, (2. Vols.), W. A. Benjamin, New York.Google Scholar
  104. 100.
    Szebehely, V. et al., 1970, “Mean Motions and Characteristic Exponents at the Libration Points”, Astron. J., 75, 92–95.CrossRefGoogle Scholar
  105. 101.
    Volosov, V. M., 1962, “Averaging in Systems of Ordinary Differential Equations”, Russian Math. Surv., 17, 1–126.MATHCrossRefMathSciNetGoogle Scholar
  106. 102.
    Whittaker, E. T., 1961, “On the Adelphic Integrals of the Differential Equations of Dynamics”, Proc. Roy. Soc. Edinburg, 37, 95.Google Scholar
  107. 103.
    Whittaker, E. T., 1937, “A Treatise on the Analytical Dynamics of Particles and Rigid Bodies”, Cambridge, Univ, Press, London.MATHGoogle Scholar
  108. 104.
    Wintner, A., 1947, “The Analytical Foundations of Celestial Mechanics”, Princeton Univ. Press, Princeton, New Jersey.MATHGoogle Scholar
  109. 105.
    Zeipel, H. von, 1916–17, “Recherches sur le Mouvement des Petits Planets”, Arkiv. Astron. Mat. Phys., 11, 12, 13.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1972

Authors and Affiliations

  • Georgio Eugenio Oscare Giacaglia
    • 1
    • 2
  1. 1.University of Sao PauloBrazil
  2. 2.University of Texas at AustinUSA

Personalised recommendations