Skip to main content

Canonical Transformation Theory and Generalizations

  • Chapter
Perturbation Methods in Non-Linear Systems

Part of the book series: Applied Mathematical Sciences ((AMS,volume 8))

Abstract

In this chapter we deal with the terminology and basic well known results, which are necessary to the development of the subsequent chapters. It is not the scope of this chapter to describe Hamiltonian Systems and their general properties. They are found in several books and monographs, among which we wish to mention the classics of Birkhoff (1927), Siegel (1956), Wintner (1947), Abraham (1966), Moser (1968). We avoid any and every sophistication in arriving at intrinsic representations and definitions of Hamiltonian systems on manifolds, not because they are not important, but because they are of no essential necessity in what has to follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., 1967, “Foundations of Mechanics”, W. A. Benjamin Inc., Philadelphia.

    Google Scholar 

  2. Arnol’d, V. I., 1963, “Small Denominators and Problems Of Stability of Motion in Classical and Celestial Mechanics”, Uspeki Mat. Nauk USSR 18, 91–192.

    Google Scholar 

  3. Birkhoff, G. D., 1915, “Proof of Poincaré’s Geometric Theorem”, Trans. Amer. Math. Soc, 14, 14–22.

    MathSciNet  Google Scholar 

  4. — 1915, “The Restricted Problem of Three Bodies”, Rend. Circ. Mat. Palermo, 39, 1–115.

    Article  Google Scholar 

  5. —, 1927, “Dynamical Systems”, Am. Math. Soc. Colloq. Pub., IX, Providence, R. I.

    Google Scholar 

  6. Breves, J. A., 1968, “A new proof of the conditions for a canonical transformation”, Seminars, Univ. of São Paulo (in Cel. Mech., 6, No. 1, 1972).

    Google Scholar 

    Google Scholar 

  7. Brouwer, D. and Clemence, G. M., 1961, “Methods of Celestial Mechanics”, Academic Press, New York.

    Google Scholar 

  8. Brown, E. W., 1931, “Elements of Theory of Resonance”, Rice Inst. Publ. 19, Houston.

    Google Scholar 

  9. Burstein, E. L. and Solovev, L. S., 1961, Dokl. Akad. Nauk USSR, 139, 855–858.

    Google Scholar 

  10. Campbell, J. A. and Jefferys, W. H., 1970, “Equivalence of the Perturbation Theories of Hori and Deprit”, Cel. Mech., 2, 467.

    Article  MATH  Google Scholar 

  11. Cartan, E., 1963, “Elementary Theory of Analytic Functions of One or Several Complex Variables”, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  12. Cesari, L., 1940, “Sulla Stabilità delle Soluzioni dei Sistemi di Equazioni Differenziali Lineari a Coefficienti Periodici”, Atti Accad. Ital. Mem. Clas. Fis. Mat. e Nat., 11, 633–692.

    MathSciNet  Google Scholar 

  13. —, 1959, “Asymptotic Behavior and Stability Problems in Ordinary Differential Equations”, Springer-Verlag, Berlin (Second Ed., 1963? Acad. Press, New York).

    MATH  Google Scholar 

  14. Danby, J. M. A., 1962, “Fundamentals of Celestial Mechanics”, MacMillan, New York.

    Google Scholar 

  15. Darwin, G. H., 1911, “Scientific Papers”, Cambridge Univ. Press, London.

    Google Scholar 

  16. Delaunay, C. E., 186O-1867, Mèm. Acad. Sci. Paris, 28, 29 (entire volumes).

    Google Scholar 

  17. Deprit, A., 1969, “Canonical Transformations Depending on a Small Parameter”, Cel. Mech., 1, 12–30.

    Article  MathSciNet  MATH  Google Scholar 

  18. Diliberto, S. P. and Hufford, G., 1956, “Perturbation Theorems for Nonlinear Ordinary Differential Equations”, Ann. Math. Studies 36, 207–236.

    MathSciNet  MATH  Google Scholar 

  19. Diliberto, S. P., 1960, “Perturbation Theorems for Periodic Surfaces. I” Rend. Circ. Mat. Palermo, 9, 265–299.

    Article  MathSciNet  Google Scholar 

  20. Diliberto, S. P., 1961 “Perturbation Theorems for Periodic Surfaces II”, Rend. Circ. Mat. Palermo, 10, 111.

    MathSciNet  MATH  Google Scholar 

  21. Diliberto, S. P., Kyner, W. T. and Freund, R. F., 1961, “The Application of Periodic Surface Theory to the Study of Satellite Orbits”, Astron. J., 66, 118–127.

    Article  MathSciNet  Google Scholar 

  22. Diliberto, S. P., 1967, “New Results on Periodic Surfaces and the Averaging Principle”, U.S.-Japanese Semin. on Diff. Func. Equas., pp. 49–87, W. A. Benjamin, Inc., Philadelphia.

    Google Scholar 

  23. Dirac, P. A. M., 1958, “Generalized Hamiltonian Dynamics”, Proceed. Roy. Soc. London, A246, 326–332.

    Article  MathSciNet  Google Scholar 

  24. Euler, L., 1772, “Theoria Motus Lunae, Novo Methodo”, 775 pp., Petrop. (in Brown, E. W., “Lunar Theory”, Dover Public, New York, 1960).

    Google Scholar 

  25. Gambill, R. A., 1954, “Criteria for Parametric Instability for Linear Differential Systems with Periodic Coefficients”, Riv. Mat. Univ. Parma, 5, 169-181.

    MathSciNet  MATH  Google Scholar 

  26. —, 1955, Ibidem, 6, 37–43.

    MathSciNet  MATH  Google Scholar 

  27. —, 1956, Ibidem, 6, 311–319.

    MathSciNet  Google Scholar 

  28. — and Hale, J. K., 1956, “Subharmonics and Ultraharmonics Solutions of Weakly Nonlinear Systems”, J. Rat. Mech. Anal., 5, 353–398.

    MathSciNet  MATH  Google Scholar 

  29. Giacaglia, G. E. O., 1964, “Notes on von Zeipel’s Method”, GSFC-NASA Publ. X-547-64-161, Greenbelt, Md.

    Google Scholar 

  30. —, 1965, “Evaluation of Methods of Integration by Series in Celestial Mechanics”, Ph.D. Dissertation, Yale University, New Haven.

    Google Scholar 

  31. Hale, J. K., 1954, “On the boundedness of the solution of linear differential systems with periodic coefficients,” Riv. Mat. Univ. Parma, 5, 137–167.

    MathSciNet  MATH  Google Scholar 

  32. —, 1954, “Periodic Solutions of Nonlinear Systems of Differential Equations”, Riv. Mat. Univ. Parma, 5, 281–311.

    MathSciNet  MATH  Google Scholar 

  33. —, 1958, “Sufficient Conditions for the Existence of Periodic Solutions of First and Second Order Differential Equations”, J. Math. Mech., 7, 163–172.

    MathSciNet  MATH  Google Scholar 

  34. —, 1961, “Integral Manifolds of Perturbed Differential Equations”, Ann. Math., 73, 496–531.

    Google Scholar 

  35. Hori, G., 1966, “Theory of General Perturbations with Unspecified Canonical Variables”, Publ. Astron. Soc. Japan, 18, 287–296.

    Google Scholar 

  36. —, 1970, “Lie Transformations in Nonhamiltonian Systems”, Lecture Notes, Summer Institute in Orbital Mechanics, The Univ. of Texas at Austin, May 1970.

    Google Scholar 

  37. —, 1971, “Theory of General Perturbations for Noncanonical Systems”, Publ. Astron. Soc. Japan, 23, 567–587.

    Google Scholar 

  38. Kamel, A. A., 1970, “Perturbations Methods in the Theory of Nonlinear Oscillations”, Cel. Mech., 3, 90–106.

    Article  MathSciNet  MATH  Google Scholar 

  39. Koibnogorov, N. A., 1954, “General Theory of Dynamical Systems and Classical Mechanics”, Proc. Int. Cong. Math., Amsterdam, 1, 315–333, Noordhoff (1957),

    Google Scholar 

  40. Krylov, N. and Bogoliubov, N. N., 1934, “The Applications of Methods of Nonlinear Mechanics to the Theory of Stationary Oscillations”, Publ. Ukranian Acad. Sci., No. 8, Kiev.

    Google Scholar 

  41. —, 1947, “Introduction to Nonlinear Mechanics”, Annals. Math. Studies, 11, Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

  42. Kurth, R., 1959, “Introduction to the Mechanics of the Solar System”, Pergamon Press, New York (Chapt. III, Section 3).

    MATH  Google Scholar 

  43. Kyner, W. T., 1964, “Qualitative Properties of Orbits about an Oblate Planet” Comm. Pure Appl. Math., 17, 227–231.

    Article  MathSciNet  MATH  Google Scholar 

  44. —, 1967, “Averaging Methods in Celestial Mechanics”, Proc. Intern. Astron. Union Symp., No. 25, Thessaloniki, Greece, 1964. Acad. Press, New York.

    Google Scholar 

  45. Leimanis, E., 1965, “The General Problem of Motion of Coupled Rigid Bodies about a Fixed Point”, Springer-Verlag, New York (pp. 121–128).

    MATH  Google Scholar 

  46. Lie, M. S., 1888, “Theorie der Transformationgruppen”, Teubner, Leipzig (vol. 1, I).

    Google Scholar 

  47. Lindstedt, A., 1882, “Beitrag zur Integration der Differentialgleichungen der Storungtheorie”, Abh. K. Akad. Wiss. St. Petersburg, 31, No. 4 (See also: 1883, Comptes Rendus Acad. Sci. Paris, 3,

    Google Scholar 

    Google Scholar 

  48. Lindstedt, A., 1884, “Beitrag zur Integration der Differentialgleichungen der Storungtheorie”, Bull. Astron., 1, 302).

    MathSciNet  Google Scholar 

  49. MacMillan, W. D., 1920, “Dynamics of Rigid Bodies”, Dover Publications, New York (pp. 403–413).

    Google Scholar 

  50. Merman, G. A., 1961, “Almost Periodic Solutions and the Divergence of Lindstedt’s Series in the Planar Restricted Problem of Three Bodies”, Bull. Inst. Theor. Astron. Leningrad, 8, 5.

    Google Scholar 

  51. Mersman, W. A., 1970, “A new algorithm for the Lie Transformation”, Cel. Mech., 3, 81–89.

    Article  MathSciNet  MATH  Google Scholar 

  52. —, 1970, “A Unified Treatment of Lunar Theory and Artificial Satellite Theory” in “Periodic Orbits, Stability and Resonances”, Ed. G. E. O. Giacaglia, D. Reidel Pub. Co., Dordrecht, Holland.

    Google Scholar 

  53. —, 1971, “Explicit Recursive Algorithm for the Construction of Equivalent Canonical Transformations”, Cel. Mech., 3, 384–389.

    Article  MathSciNet  MATH  Google Scholar 

  54. Miners, W. E., Tapley, B. D. and Powers, W. F., 1967, “The Hamilton-Jacobi Method Applied to the Low-Thrust Trajectory Problem”, Proc. 18th Cong. Intern. Astronaut. Fed., Belgrade, Yugoslavia.

    Google Scholar 

  55. Moulton, F. R. et al., 1920, “Periodic Orbits”, Carnegie Inst. Wash. Publ., No. 161, Washington, D. C.

    MATH  Google Scholar 

  56. Moser, J., 1955, “Nonexistence of Integrals for Canonical Systems of Differential Equations”, Comm. Pure Appl. Math., 8, 409–436.

    Article  MathSciNet  MATH  Google Scholar 

  57. —, 1962, “On Invariant Curves of Area-Preserving Mappings of an Annulus”, Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. II, 1–20.

    Google Scholar 

  58. —, 1968, “Lectures on Hamiltonian Systems”, Mem. Amer. Math. Soc., 81, pp. 1–60.

    Google Scholar 

  59. Poincaré, H., 1886, “Sur la Méthode de M. Lindstedt”, Bull. Astron., 3, 57.

    Google Scholar 

  60. —, 1892–93–99, “Les Méthodes Nouvelles de la Mécanique Célèste”, (3 vols.) Reprint by Dover Publ., New York, 1957.

    Google Scholar 

  61. —, 1909–12, “Leçons de Mécanique Célèste”, Gauthier-Villars, Paris (vol. 2, part 2).

    MATH  Google Scholar 

  62. —, 1912, “Sur un Théorème de Géometrie”, Rend. Circ. Mat. Palermo 33, 375–407.

    Article  Google Scholar 

  63. Poisson, S. D., 1834? “Mémoire sur la Variation des Constantes Arbitraires”, J. École Polyt., 3, 266–344 (See also Ref. 41).

    Google Scholar 

  64. Powers, W. F. and Tapley, B. D., 1949, “Canonical Transformation Applications to Optimal Trajectory Analysis”, AIAA Journal, 7, 394–399.

    Article  Google Scholar 

  65. Shniad, H., 1969, “The Equivalence of von Zeipel Mappings and Lie Transforms”, Cel. Mech., 2, 114–120. (For the background and earlier proof of the main theorem in Shniad’s paper see: Lanczos, C, “The Variational Principles of Mechanics”, Univ. of Toronto Press, Toronto, chapt. VII).

    Google Scholar 

  66. Siegel, C. L., 1941, “On the Integrals of Canonical Systems”, Ann. Math., 42, 806–822.

    Article  Google Scholar 

  67. —, 1956, “Vorlesungen über Himmelsmechanik”, Springer-Verlag, Berlin.

    Google Scholar 

  68. Strömgren, E., (see Ref. 67, pp. 550–555).

    Google Scholar 

  69. Szebehely, V., 1967, “Theory of Orbits — The Restricted Problem of Three Bodies”, Acad. Press, New York.

    Google Scholar 

  70. Tisserand, F., 1896, “Traité de Mécanique Célèste”, (4 vols.) Gauthier-Villars, Paris, (see also 1868, Thèse de Doctorat, J. de Liouville).

    Google Scholar 

  71. Wintner, A., 1941, “The Analytical Foundations of Celestial Mechanics”, Princeton Univ. Press, Princeton, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Giacaglia, G.E.O. (1972). Canonical Transformation Theory and Generalizations. In: Perturbation Methods in Non-Linear Systems. Applied Mathematical Sciences, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6400-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6400-2_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90054-4

  • Online ISBN: 978-1-4612-6400-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics