Skip to main content

Hormonal Regulation of Hepatic Protein Metabolism in the Rat In Vivo. Control by Glucagon

  • Conference paper
  • 105 Accesses

Abstract

The ureogenic effect of glucagon in the rat in vivo was accompanied by a decrease in the rate of hepatic protein synthesis and by a significant and progressive increase of proteolysis, expressed as a rise in hepatic valine levels. The effect on protein synthesis was maximal five minutes after hormone administration and decreased progressively thereafter to reach control values after 20 minutes. On the contrary, ureogenesis and proteolysis increased progressively throughout the 20 minutes of the experiment suggesting a close relationship between the two processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airhardt, J., Vidrich, A. and Khairallah, E. A. (1974): Compartmentation of free amino acids for protein synthesis in rat liver. Biochem. J. 140, 539–548.

    Google Scholar 

  2. Ashford, J. P. and Porter, K. R. (1962): Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 12, 198–202.

    Article  PubMed  CAS  Google Scholar 

  3. Ayuso-Parrilla, M. S., Martin-Requero, A., Perez-Diaz, J. and Parrilla, R. (1976): Role of glucagon on the control of hepatic protein synthesis and degradation in the rat in vivo. J. Biol. Chem., in press.

    Google Scholar 

  4. Ayuso-Parrilla, M. S. and Parrilla, R. (1973): Glucagon effect on rat liver protein synthesis in vivo. Biochem. Biophys. Res. Commun. 52, 582–587.

    Article  PubMed  CAS  Google Scholar 

  5. Ayuso-Parrilla, M. S. and Parrilla, R. (1975): Control of hepatic protein synthesis. Differential effects of ATP levels on the initiation and elongation steps. Eur. J. Biochem. 55, 593–599.

    CAS  Google Scholar 

  6. Bergmeyer, H. U. (1965): Methods of Enzymatic Analysis. Academic Press, New York.

    Google Scholar 

  7. Clemens, M. J. and Pain, V. M. (1974): Hormonal requirements for acute stimulation of rat liver polysome formation by amino acid feeding. Biochim. Biophys. Acta 361, 345–358.

    PubMed  CAS  Google Scholar 

  8. Colombo, B., Felicetti, L. and Baglioni, C. (1966): Inhibition of protein synthesis in reticulocytes by antibiotics... Effect on polysomes. Biochim. Biophys. Acta 119, 109–119.

    CAS  Google Scholar 

  9. Deter, R. L. and DeDuve, C. (1967): Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J. Cell. Biol. 33, 437–449.

    Article  PubMed  CAS  Google Scholar 

  10. Dole, V. P. and Meinertz, H. (1960): Microdetermination of long chain fatty acids in plasma and tissues. J. Biol. chem. 235, 2595–2599.

    PubMed  CAS  Google Scholar 

  11. Exton, C. R. and Park, J. H. (1972): Glucagon and the metabolism of glucose. In: Glucagon. Molecular Physiology, Clinical and Therapeutic Implications. P. J. Lefebvre and R. H. Unger, Eds. Pergamon Press, New York, pp. 77–150.

    Google Scholar 

  12. Fern, E. B. and Garlick, P. J. (1974): The specific radioactivity of the precursor pool for estimates of the rate of protein synthesis. Biochem. J. 134, 1127–1130.

    Google Scholar 

  13. Greengaard, O. (1969): The hormonal regulation of enzymes in prenatal and postnatal rat liver. Biochem. J. 115, 19–24.

    Google Scholar 

  14. Hagen, J. H. (1961): Effects of glucagon on the metabolism of adipose tissue. J. Biol. Chem. 236, 1023–1027.

    PubMed  CAS  Google Scholar 

  15. Haschemeyer, A. E. V. (1969): Rates of polypeptide chain assembly in liver in vivo: relation to the mechanism of temperature acclimation in Opsanus tau. Proc. Nat. Acad. Sci. USA 62, 128–135.

    Article  PubMed  CAS  Google Scholar 

  16. Jost, J. P., Hsie, A. W., Hughes, S. D. and Ryan, L. (1970): Role of cyclic adenosine 3’–5’-monophosphate in the induction of hepatic enzymes. Kinetics of the induction of rat liver serine dehydratase by cyclic adenosine 3’–5’- monophosphate. J. Biol. Chem. 245, 351–357.

    CAS  Google Scholar 

  17. Krebs, H. A. (1971): Gluconeogenesis and redox state. In: Regulation of Gluconeogenesis. H. D. Soling and B. Willms, Eds. Academic Press, New York, pp. 114–117.

    Google Scholar 

  18. Lin, S. Y., Mosteller, R. D. and Hardesty, B. (1966): The mechanism of sodium fluoride and cycloheximide inhibition of hemoglobin biosynthesis in the cell free reticulocyte system. J. MoT. Biol. 21, 51–69.

    Article  CAS  Google Scholar 

  19. Loeb, J. E. and Blatt, C. (1970): Phosphorylation of some rat liver ribosomal proteins and its activation by cyclic AMP. FEBS Letters 10, 105–108.

    Article  PubMed  CAS  Google Scholar 

  20. Mallette, L. E., Exton, J. H. and Park, C. A. (1969): Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J. Biol. Chem. 244, 5724–5728.

    PubMed  CAS  Google Scholar 

  21. Mathews, R. W., Oronsky, A. and Haschemeyer, A. E. V. (1973): Effect of thyroid hormone on polypeptide chain assembly kinetics in liver protein synthesis in vivo. J. Biol. Chem. 248, 1329–1333.

    PubMed  CAS  Google Scholar 

  22. Miller, L. L. (1960): Glucagon: a protein catabolic hormone in the isolated perfused rat liver. Nature 185, 248.

    Google Scholar 

  23. Mortimore, G. E. and Mondon, C. E. (1970): Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J. Biol. Chem. 245, 2375–2383.

    PubMed  CAS  Google Scholar 

  24. Mortimore, G. E., Woodside, K. H. and Henry, J. E. (1972): Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J. Biol. Chem. 247, 2776–2784.

    PubMed  CAS  Google Scholar 

  25. Parrilla, R. and Goodman, M. N. (1974): Nitrogen metabolism in the isolated perfused rat liver. Nitrogen balance, redox state and rates of proteolysis. Biochem. J. 138, 341–348.

    PubMed  CAS  Google Scholar 

  26. Parrilla, R., Goodman, M. N. and Toews, C. J. (1974): Effect of glucagon: insulin ratios on hepatic metabolism. Diabetes 23, 725–731.

    PubMed  CAS  Google Scholar 

  27. Parrilla, R., Jimenez, M. I. and Ayuso-Parrilla, M. S. (1975): Glucagon and insulin control of gluconeogenesis in the perfused isolated rat liver. Effects on cellular metabolite distribution. Eur. J. Biochem. 56, 375–383.

    CAS  Google Scholar 

  28. Parrilla, R., Jimenez, M. I. and Ayuso-Parrilla, M. S. (1976): Cellular redistribution of metabolites during glucagon and insulin control of gluconeogenesis in the isolated perfused rat liver. Arch. Biochem. Biophys. 174, 1–12.

    Article  PubMed  CAS  Google Scholar 

  29. Penhos, J. C., Wu, C. H., Daunas, J., Reitman, M. and Levine, R. (1966): Effect of glucagon on lipids and on urea formation by the perfused rat liver. Diabetes 15, 740–748.

    PubMed  CAS  Google Scholar 

  30. Pryor, J. and Berthet, J. (1960): The action of adenosine 3’,5’-monophosphate on the incorporation of leucine into liver proteins. Biochim. Biophys. Acta 43, 556–557.

    Google Scholar 

  31. Richardson, A., McGown, E., Henderson, L. M. and Swan, P. B. (1971): In vitro amino acid incorporation by the postmitochondrial supernatant from rat liver. Biochim. Biophys. Acta 254, 468–477.

    PubMed  CAS  Google Scholar 

  32. Samols, E., Tyler, J. M. and Marks, V. (1972): Glucagon:insulin interrelationships. In: Glucagon. Molecular Physiology, Clinical and Therapeutic Implications. P. J. Lefebvre and R. H. Unger, Eds. Pergamon Press, New York, pp. 151–173.

    Google Scholar 

  33. Scornik, O. (1974): In vivo rate of translation by ribosomes of normal and regenerating liver. J. Biol. Chem. 249, 3876–3883.

    PubMed  CAS  Google Scholar 

  34. Sokal, J. E. (1966): Effect of glucagon on gluconeogenesis by the isolated perfused rat liver. Endocrinology 78, 538–548.

    Article  PubMed  CAS  Google Scholar 

  35. Steinberg, D., Shafrir, E. and Vaughan, M. (1959): Direct effect of glucagon on release of unesterified fatty acid from adipose tissue. Clin. Res. 7, 250.

    Google Scholar 

  36. Struck, E., Ashmore, J. and Wieland, O. (1965): Stimulierung der Gluconeogenese durch langkettige Fettsaiiren und Glukagon. Biochem. Z. 343, 107–110.

    PubMed  CAS  Google Scholar 

  37. Struck, E., Ashmore, J. and Wieland, O. (1966): Effects of glucagon and long chain fatty acids on glucose production by isolated rat liver. Adv. Enzyme Regul. 4, 219–224.

    Article  PubMed  CAS  Google Scholar 

  38. Taunton, O. D., Steifel, F. B., Greene, H. L. and Herman, R. H. (1974): Rapid reciprocal changes in rat hepatic glycolytic enzyme and fructose diphosphatase activities following insulin and glucagon injection. J. Biol. Chem. 249, 7228–7239.

    PubMed  CAS  Google Scholar 

  39. Tybergheim, J. (1953): Action du glucagon sur le metabolisme des proteines. Arch, internat. Physiol. 61, 104–107.

    Article  Google Scholar 

  40. Weinges, K. F. (1961): Der Einfluss von Glukagon und Insulin auf den Stoffwechsel der nichtveresterten Fettsauren am isolierten Fettgewebe der Ratte in vitro. Klin. Wschr. 39, 293–298.

    Article  PubMed  CAS  Google Scholar 

  41. Weinstein, J., Klausner, H. A. and Heimberg, M. (1973): The effect of concentration of glucagon on output of triglyceride, ketone bodies, glucose and urea by the liver. Biochim. Biophys. Acta 296, 300–309.

    PubMed  CAS  Google Scholar 

  42. Wicks, W. D. (1969): Induction of hepatic enzymes by adenosine 3’,5’- monophosphate in organ culture. J. Biol. Chem. 244, 3941–3950.

    PubMed  CAS  Google Scholar 

  43. Williamson, J. R. (1970): Role of lipolysis in the gluconeogenic action of glucagon. In: Metabolic Regulation and Enzyme Action. A. Sols and S. Grisolia, Eds. Academic Press, pp. 107–113.

    Google Scholar 

  44. Williamson, J. R. and Corkey, B. E. (1968): Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. In: Methods in Enzymology, Vol. 13. J. M. Lowenstein, Ed. Academic Press, New York, pp. 434–513.

    Google Scholar 

  45. Woodside, K. H., Ward, W. F. and Mortimore, G. E. (1974): Effects of glucagon on general protein degradation and synthesis in perfused rat liver. J. Biol. Chem. 249, 5458–5463.

    PubMed  CAS  Google Scholar 

  46. Yeung, D. and Oliver, I. T. (1968): Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine 3’,5’-cyclic monophosphate. Biochemistry 7, 3231–3239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag New York Inc.

About this paper

Cite this paper

Parrilla, R., Martin-Requero, A., Perez-Diaz, J., Ayuso-Parrilla, M.S. (1977). Hormonal Regulation of Hepatic Protein Metabolism in the Rat In Vivo. Control by Glucagon. In: Foà, P.P., Bajaj, J.S., Foà, N.L. (eds) GLUCAGON: Its Role in Physiology and Clinical Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6366-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6366-1_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6368-5

  • Online ISBN: 978-1-4612-6366-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics