Guanyl Nucleotide Regulation of the Liver Glucagon-Sensitive Adenylyl Cyclase System

  • L. Birnbaumer
  • T. L. Swartz
Conference paper

Abstract

Properties of the GMP-P(NH)P-activated glucagon sensitive adenylyl cyclase from rat liver plasma membranes were studied with respect to reversal of nucleotide imidodiphosphate analog activation. It was found that incubation of the analog-activated state with excess GTP (the natural effector) in the presence of substrate (ATP), divalent cation (Mg++), a chelator (EDTA), the reaction product (cAMP), and an ATP-regeneration system, resulted in reversal of activity to that seen with GTP alone. The reversed state was demonstrated to be both sensitive to re-stimulation by GMP-P(NH)P and to stimulation by glucagon, and was therefore not the result of GTP-induced inactivation of the enzyme. Examination of the time course of GTP-induced reversal of GMP-P(NH)P activation, as well as of GMP-P(NH)P-induced re-stimulation of reversed activity revealed that guanyl nucleotide effects occur with progressively increasing lag times, suggesting the existence or participation of one or more co-factors. These findings are inconsistent with the mechanism of GMP-P(NH)P activation involving the irreversible formation of an enzyme-P(NH)P derivative and suggest a more complex mechanism than the involvement of a simple two step isomerization reaction.

Keywords

Catecholamine Adenine Creatine Nucleoside Coupler 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bilezikian, J. P. and Aurbach, G. D. (1974): The effects of nucleotides on the expression of ß-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes. J. Biol. Chem. 249, 157–161.PubMedGoogle Scholar
  2. 2.
    Birnbaumer, L., Nakahara, T. and Yang, P.Ch. (1974): Studies on receptor- mediated activation of adenylyl cyclases. II. Nucleotide and nucleoside regulation of the activities of the renal medullary adenylyl cyclase and their stimulation by neurohypophyseal hormones. J. Biol. Chem. 249, 7857–7866.PubMedGoogle Scholar
  3. 3.
    Birnbaumer, L., Pohl, S. L. and Rodbell, M. (1972): The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J. Biol. Chem. 247, 2038–2043.PubMedGoogle Scholar
  4. 4.
    Bockaert, J., Hunzicker-Dunn, M. and Birnbaumer, L. (1976): Hormone- stimulated desensitization of hormone-dependent adenylyl cyclase: Dual action of luteinizing hormone on pig graafian follicle membranes. J. Biol. Chem. 251, 2653–2663.PubMedGoogle Scholar
  5. 5.
    Cuatrecasas, P., Jacobs, S. and Bennet, V. (1975): Activation of adenylate cyclase by phosphoramidate and phosphonate analogs of GTP: Possible role of covalent enzyme-substrate intermediates in the mechanism of hormonal activation. Proc. Nat. Acad. Sci. USA, 72, 1739–1743.PubMedCrossRefGoogle Scholar
  6. 6.
    Drummond, G. I. and Duncan, L. (1970): Adenyl cyclase in cardiac tissue. J. Biol. Chem. 245, 976–983.PubMedGoogle Scholar
  7. 7.
    Harwood, J. P., Low, H. and Rodbell, M. (1973): Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase. J. Biol. Chem. 248, 6239–6245.PubMedGoogle Scholar
  8. 8.
    Lefkowitz, R. J. (1974): Stimulation of catecholamine-sensitive adenylate cyclase by 5’guanylyl-imidodiphosphate. J. Biol. Chem., 249, 6119–6124.PubMedGoogle Scholar
  9. 9.
    Lefkowitz, R. J. (1975): Guanosine triphosphate binding sites in solubilized myocardium. J. Biol. Chem. 250, 1006–1011.Google Scholar
  10. 10.
    Lefkowitz, R. J. and Caron, M. G. (1975): Characteristics of 5’-guanyl imidodiphosphate-activated adenylate cyclase. J. Biol. Chem. 250, 4418–4422.PubMedGoogle Scholar
  11. 11.
    Levey, G. S. (1971): Restoration of norepinephrine responsiveness of solubilized myocardial adenylate cyclase by phosphatidyl inositol. J. Biol. Chem. 246, 7405–7410.PubMedGoogle Scholar
  12. 12.
    Levey, G. S. (1971): Restoration of glucagon responsiveness of solubilized myocardial adenyl cyclase by phosphatidyl serine. Biochem. Biophys. Res. Commun. 43, 109–111.CrossRefGoogle Scholar
  13. 13.
    Levitski, A., Sevilla, N. and Steer, M. L. (1976): The regulatory control of B-receptor dependent adenylate cyclase. J. Supramol. Str. 4, 405–418.CrossRefGoogle Scholar
  14. 14.
    Lin, M. C., Salomon, Y., Rendell, M. and Rodbell, M. (1975): The hepatic adenylate cyclase system. II. Substrate binding and utilization and the effects of magnesium ion and pH. J. Biol. Chem. 250, 4246–4252.PubMedGoogle Scholar
  15. 15.
    Lin, M. C., Wright, D. W., Hruby, V. J. and Rodbell, M. (1975): Structure- function relationships in glucagon: Properties of highly purified des-hisl-, monoiodo-, and des-asn28, thr29 (homoserine lacton)-glucagon. Biochemistry 14, 1559–1563.PubMedCrossRefGoogle Scholar
  16. 16.
    Londos, C. and Rodbell, M. (1975): Multiple inhibitory and activating effects of nucleotides and magnesium on adrenal adenylate cyclase. J. Biol. Chem. 250, 3459–3465.PubMedGoogle Scholar
  17. 17.
    Londos, C., Salomon, Y., Lin, M. C., Harwood, J. P., Schramm, M., Wolff, J. and Rodbell, M. (1974): 5’-guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc. Nat. Acad. Sci. USA, 71, 3087–3090.Google Scholar
  18. 18.
    Pfeuffer, T. and Helmreich, E. J. M. (1975): Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J. Biol. Chem. 250, 867–876.PubMedGoogle Scholar
  19. 19.
    Pohl, S. L., Krans, H. M. J., Kozyreff, V., Birnbaumer, L. and Rodbell, M. (1971): The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J. Biol. Chem. 246, 4447–4454.PubMedGoogle Scholar
  20. 20.
    Puchwein, G., Pfeuffer, T. and Helmreich, E. J. M. (1974): Uncoupling of catecholamine activation of pigeon erythrocyte membrane adenylate cyclase. J. Biol. Chem. 249, 3232–3240.PubMedGoogle Scholar
  21. 21.
    Rendell, M., Salomon, Y., Lin, M. C., Rodbell, M. and Berman, M. (1975): The hepatic adenylate cyclase system. III. A mathematical model for the steady state kinetics of catalysis and nucleotide regulation. J. Biol. Chem. 250, 4235–4260.Google Scholar
  22. 22.
    Rodbell, M. (1975): On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. J. Biol. Chem. 250, 5826–5834.PubMedGoogle Scholar
  23. 23.
    Rodbell, M., Birnbaumer, L., Pohl, S. L. and Krans, H. M. J. (1971): Regulation of glucagon action and its receptor. In: Structure-Activity Relationships of Protein and Polypeptide Hormones. M. Margoulis and F. C. Greenwood, Eds. Excerpta Medica Int. Congr. Ser. No. 241, Vol. 1, pp 199–211.Google Scholar
  24. 24.
    Rodbell, M., Birnbaumer, L., Pohl, S. L. and Krans, H. M. J. (1971): The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J. Biol. Chem. 246, 1877–1882.PubMedGoogle Scholar
  25. 25.
    Rodbell, M., Birnbaumer, L., Pohl, S. L. and Sundby, F. (1971): The reaction of glucagon with its receptor: Evidence for disease regions of activity and binding in the glucagon molecule. Proc. Nat. Acad. Sci. USA 68, 909–913.PubMedCrossRefGoogle Scholar
  26. 26.
    Rodbell, M., Lin, M. C. and Salomon, Y. (1974): Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J. Biol. Chem. 249, 59–65.PubMedGoogle Scholar
  27. 27.
    Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M. and Berman, M. (1974): The role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: Evidence for multi-site transition states. Acta Endocr. 77, 11–37.Google Scholar
  28. 28.
    Rodbell, M., Lin, M. C., Salomon, Y., Londos, C., Harwood, J. P., Martin, B. R., Rendell, M. and Berman, M. (1975): Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: Evidence for multiple transition states. In: Advances in Cyclic Nucleotide Research. G. I. Drummond, P. Greengard and G. A. Robinson, Eds. Raven Press, New York, Vol. 5, pp. 3–30.Google Scholar
  29. 29.
    Salomon, Y., Lin, M. C., Londos, C., Rendell, M. and Rodbell, M. (1975): The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanine nucleotide activation. J. Biol. Chem. 250, 4239–4260.PubMedGoogle Scholar
  30. 30.
    Salomon, Y., Londos, C. and Rodbell, M. (1974): A highly sensitive adenylate cyclase assay. Anal. Biochem. 58, 541–548.PubMedCrossRefGoogle Scholar
  31. 31.
    Schramm, M. and Rodbell, M. (1975): A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl imidodiphosphate in frog erythrocyte membranes. J. Biol. Chem. 250, 2232–2237.PubMedGoogle Scholar
  32. 32.
    Sevilla, N., Steer, M. L. and Levitzki, A. (1976): Synergistic activation of adenylate cyclase by guanylyl imidophosphate and epinephrine. Biochemistry 15, 3493–3499.PubMedCrossRefGoogle Scholar
  33. 33.
    Spiegel, A. M. and Aurbach, G. D. (1974): Binding of 5’guanylyl-imidodiphos- phate to turkey erythrocyte membranes and effects on beta-adrenergic- activated adenylate cyclase. J. Biol. Chem. 249, 7630–7636.PubMedGoogle Scholar
  34. 34.
    Spiegel, A. M., Brown, E. M., Fedak, S. A., Woodward, C. J. and Aurbach, G. D. (1976): Holocatalytic state of adenylate cyclase in turkey erythrocyte membranes: Formation with guanylylimidodiphosphate plus isoproterenol without effect on affinity of $-receptor. J. Cyclic Nucleotide Res. 2, 47–56.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • L. Birnbaumer
    • 1
  • T. L. Swartz
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations