Advertisement

Photosynthesis in the Principal Barrow, Alaska, Species: A Summary of Field and Laboratory Responses

  • Larry L. Tieszen
Part of the Ecological Studies book series (ECOLSTUD, volume 29)

Abstract

A number of factors suggest that the photosynthetic systems of tundra plants function effectively under arctic environments. For example, the Barrow wet meadow system is capable of accumulating 100 g of dry matter aboveground in a 55-day period (Tieszen, 1972). This production results in a minimal efficiency of primary production of 0.46%. This comparatively high efficiency suggests that the process of photosynthesis is adapted to the low ambient temperatures, a suggestion which differs from the review and theoretical consideration provided by Warren Wilson (1966). One of the main limitations to primary production in this system may be simply the short duration of the growing season.

Keywords

Vascular Plant Leaf Area Index Arctic Tundra Maximum Photosynthetic Rate Production Ecology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allessio, M. L., and L. L. Tieszen. (1975) Patterns of carbon allocation in an arctic tundra grass, Dupontia fischeri (Gramineae), at Barrow, Alaska. Amer. J. Bot., 62: 797–807.CrossRefGoogle Scholar
  2. Billings, W. D., P. J. Godfrey, B. F. Chabot, and D. P. Bourque. (1971) Metabolic acclimation to temperature in arctic and alpine ecotypes of Oxyria digyna. Arct. Alp. Res., 3: 277–289.CrossRefGoogle Scholar
  3. Caldwell, M. M., L. L. Tieszen, and M. Fareed. (1974) The canopy structure of tundra plant communities at Barrow, Alaska, and Niwot Ridge, Colorado. Arct. Alp. Res., 6: 151–159.CrossRefGoogle Scholar
  4. Caldwell, M. M., D. A. Johnson, and M. Fareed. (1978) Constraints on tundra productivity: Photo synthetic capacity in relation to solar radiation utilization and water stress in arctic and alpine tundras. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 13.Google Scholar
  5. Coyne, P. I., and J. J. Kelley. (1975) CO2 exchange over the Alaskan arctic tundra: Meteorological assessment by an aerodynamic method. J. Appl. Ecol., 12: 587–611.CrossRefGoogle Scholar
  6. Coyne, P. I., and J. J. Kelley. (1978) Meteorological assessment of CO2 exchange over an Alaskan arctic tundra. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 12.Google Scholar
  7. Fonda, R. W., and L. C. Bliss. (1966) Annual carbohydrate cycle of alpine plants on Mt. Washington, New Hampshire. Bull. Torrey Bot. Club, 93: 268–277.CrossRefGoogle Scholar
  8. Gerasimenko, T. V., and O. V. Zalenskii. (1973) Diurnal and seasonal dynamics of photosynthesis in plants of Wrangel Island (Sutochnaia i sezonnaia dinamika fotosinteza u rastenii ostrova Vrangelia). Bot. Zh., 58: 1655–1666.Google Scholar
  9. Grace, J., and H. W. Woolhouse. (1970) A physiological and mathematical study of the growth and productivity of a Calluna-Sphagnum community. I. Net photosynthesis of Calluna vulgaris (L.) Hull. J. Appl. Ecol., 7: 363–381.CrossRefGoogle Scholar
  10. Johnson, D. A., and M. M. Caldwell. (1974) Field measurements of photosynthesis and leaf growth rate on three alpine plant species. Arct. Alp. Res., 6: 245–251.CrossRefGoogle Scholar
  11. Lewis, M. C., and T. V. Callaghan. (1975) Ecological efficiency of tundra vegetation. In Vegetation and the Atmosphere (J. L. Montieth, Ed.). New York: Academic Press, pp. 399–433.Google Scholar
  12. Mattheis, P. J., L. L. Tieszen, and M. C. Lewis. (1976) Responses of Dupontia fischeri to simulated lemming grazing in an Alaskan arctic tundra. Ann. Bot., 40: 179–197.Google Scholar
  13. Miller, P. C., and L. L. Tieszen. (1972) A preliminary model of processes affecting primary production in the arctic tundra. Arct. Alp. Res., 4: 1–18.CrossRefGoogle Scholar
  14. Miller, P. C., W. A. Stoner, and L. L. Tieszen. (1976) A model of stand photosynthesis for the wet meadow tundra at Barrow, Alaska. Ecology, 57: 411–430.CrossRefGoogle Scholar
  15. Miller, P. C., W. A. Stoner, and J. R. Ehleringer. (1978) Some aspects of water relations of arctic and alpine regions. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 14.Google Scholar
  16. Mooney, H. A., and W. D. Billings. (1960) The annual carbohydrate cycle of alpine plants as related to growth. Amer. J. Bot., 47: 594–598.CrossRefGoogle Scholar
  17. Mooney, H. A., and W. D. Billings. (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol. Monogr., 31: 1–29.CrossRefGoogle Scholar
  18. Mooney, H. A., and A. W. Johnson. (1965) Comparative physiological ecology of an arctic and an alipine population of Thalictrum alpinum L. Ecology, 4: 721–727.CrossRefGoogle Scholar
  19. Oechel, W. C., and B. Sveinbjörnsson. (1978) Primary production processes in arctic bryophytes at Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 11.Google Scholar
  20. Schultz, A. M. (1964) The nutrient recovery hypothesis for arctic microtine cycles. II. Ecosystem variables in relation to arctic microtine cycles. In Grazing in Terrestrial and Marine Environments (D. J. Crisp, Ed.). Oxford: Blackwell Scientific Publications, pp. 57–68.Google Scholar
  21. Schultz, A. M. (1969) A study of an ecosystem: The arctic tundra. In The Ecosystem Concept in Natural Resource Management (G. M. Van Dyne, Ed.). New York: Academic Press, pp. 77–93.Google Scholar
  22. Shvetsova, V. M., and V. L. Voznesenskii. (1970) Diurnal and seasonal changes of intensity of photosynthesis in some plants of the Western Taimyr. Bot. Zh., 55: 66–76. (International Tundra Biome Translation 2, April 1971; Translator: G. Belkov, 11 pp.)Google Scholar
  23. Stoner, W. A., P. C. Miller, and L. L. Tieszen. (1978) A model of plant growth and phosphorus allocation for Dupontia fischeri in coastal, wet-meadow tundra. In Vegetation and Production Ecology of an Alaskan Artic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 24.Google Scholar
  24. Tieszen, L. L. (1970) Comparisons of chlorophyll content and leaf structure in arctic and alpine grasses. Amer. Midl. Natur., 83: 238–253.CrossRefGoogle Scholar
  25. Tieszen, L. L. (1972) The seasonal course of aboveground production and chlorophyll distribution in a wet arctic tundra at Barrow, Alaska. Arct. Alp. Res., 4: 307–324.CrossRefGoogle Scholar
  26. Tieszen, L. L. (1973) Photosynthesis and respiration in arctic tundra grasses: Field light intensity and temperature responses. Arct. Alp. Res., 5: 239–251.CrossRefGoogle Scholar
  27. Tieszen, L. L. (1974) Photo synthetic ompetence of the subnivean vegetation of an arctic tundra. Arct. Alp. Res., 6: 253–256.CrossRefGoogle Scholar
  28. Tieszen, L. L. (1975) CO2 exchange in the Alaskan Arctic Tundra: Seasonal changes in the rate of photosynthesis of four species. Photosynthetica, 9: 376–390.Google Scholar
  29. Tieszen, L. L., and J. A. Helgager. (1968) Genetic and physiological adaptation in the hill reaction of Deschampsia caespitosa. Nature, 219: 1066–1067.PubMedCrossRefGoogle Scholar
  30. Tieszen, L. L., and D. A. Johnson. (1975) Seasonal pattern of photosynthesis in individual grass leaves and other plant parts in arctic Alaska with a portable 14CO2 system. Bot. Gaz., 136: 99–105.CrossRefGoogle Scholar
  31. Tieszen, L. L., and D. C. Sigurdson. (1973) Effect of temperature on carboxylase activity and stability in some Calvin cycle grasses from the arctic. Arct. Alp. Res., 5: 59–66.CrossRefGoogle Scholar
  32. Tieszen, L. L., D. A. Johnson, and M. M. Caldwell. (1974) A portable system for the measurement of photosynthesis using 14CO2. Photosynthetica, 8: 151–160.Google Scholar
  33. Treharne, K. J., and J. P. Cooper. (1969) Effect of temperature on the activity of carboxylases in tropical and temperate Gramineae. J. Exp. Bot., 20: 170–175.CrossRefGoogle Scholar
  34. Warren Wilson, J. (1966) An analysis of plant growth and its control in arctic environments. Ann. Bot., 39: 383–402.Google Scholar
  35. Webber, P. J. (1978) Spatial and temporal variation of the vegetation and its production, Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 3.Google Scholar
  36. Zalenskii, O. V., V. M. Shvetsova, and V. L. Voznessenskii. (1972) Photosynthesis in some plants of Western Taimyr. In Proceedings TV International Meeting on the Biological Productivity of Tundra (F. E. Wielgolaski and Th. Rosswall, Eds.). Stockholm: International Biological Programme Tundra Biome Steering Committee, pp. 182–186.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Larry L. Tieszen

There are no affiliations available

Personalised recommendations