Potential for Differentiation, Virus Production, and Tumorigenicity in Murine Erythroleukemic Cells Treated with Interferon

  • L. Cioé
  • A. Dolei
  • G. B. Rossi
  • F. Belardelli
  • E. Affabris
  • R. Gambari
  • A. Fantoni


Studies of erythropoiesis suffered in the past from the lack of a suitable in vitro system in which the biology of erythropoietic cells could be studied under defined conditions, on one hand, and in which mass cultures would be possible, on the other hand, so that molecular biology could also enter the picture. When Charlotte Friend showed that explants of transplantable subcutaneous tumors, originated from virus-induced murine leukemic spleens and/or livers and adapted to grow in vitro, consistently gave rise to tissue culture lines able to differentiate only along the erythroid pathway, the first step had been made toward this goal.1,2 There were, however, two unfortunate reasons why studies of this system were hindered for some time: (a) the percentage of differentiating cells was too low to allow any molecular biology analysis, and (b) the cultured cells were not sensitive to erythropoietin, which meant that erythropoiesis in this system was not the exact counterpart of the physiological pattern. It was only a few years later that Friend cells became a most popular tool for biologists and molecular biologists engaged in studies of erythropoiesis. This was due to Charlotte Friend’s3 demonstration that the addition of dimethyl sulfoxide (DMSO) to cultures of Friend cells caused a massive shift toward more differentiated stages of erythropoiesis. Although the precise mechanism of this phenomenon is still unknown, the availability of a cell population whereby 70 to 80% of the cells would engage at will in quasiterminal erythroid differentiation immediately prompted an avalanche of studies dealing with several aspects of erythropoiesis. Temin’s4 and Baltimore’s5 discovery of reverse transcriptase made possible, in addition, in vitro synthesis of radioactive complementary DNAs (cDNAs) to a given RNA probe. In erythropoiesis this meant the synthesis of the globin cDNA,6 and thus, the possibility of exact measurements of globin mRNA amounts in the Friend system.


745A Cell Globin Gene Erythroid Differentiation Virus Release DMSO Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friend C, Patuleia MC, De Harven E: Natl Cancer Inst Monogr 22: 505–522, 1966.PubMedGoogle Scholar
  2. 2.
    Rossi GB, Friend C: Proc Natl Acad Sci USA 58: 1373–1380, 1967.PubMedCrossRefGoogle Scholar
  3. 3.
    Friend C, Scher W, Holland JC, et al: Proc Natl Acad Sci USA 68: 378–382, 1971.PubMedGoogle Scholar
  4. 4.
    Temin HM, Mizutani S: Nature 226: 1211–1213, 1970.PubMedCrossRefGoogle Scholar
  5. 5.
    Baltimore D: Nature 226: 1209–1211, 1970.PubMedCrossRefGoogle Scholar
  6. 6.
    Ross J, Ikawa Y, Leder P: Proc Natl Acad Sci USA 69: 3620–3623, 1972.PubMedCrossRefGoogle Scholar
  7. 7.
    Harrison PR. In Paul J (ed): Biochemistry of Differentiation. London, MTP, in press.Google Scholar
  8. 8.
    Bernstein A, Hunt DM, Crichley V, et al: Cell 9: 375–381, 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Rovera G, O’Brien TG, Diamond L: Proc Natl Acad Sci USA 74: 2894–2898, 1977.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamasaki H, Fibach E, Nudel V, et al: Proc Natl Acad Sci USA 74: 3451–3455, 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Mc Clintock PR, Papaconstantinou J: Proc Natl Acad Sci USA 71: 4551–4555, 1974.Google Scholar
  12. 12.
    Wayne Wiens A, Mc Clintock PR, Papaconstantinou J: Biochem Biophys Res Comm 70: 824–831, 1976.Google Scholar
  13. 13.
    Levy J, Terada M, Rifkind RA, et al: Proc Natl Acad Sci USA 72: 28–32, 1975.PubMedCrossRefGoogle Scholar
  14. 14.
    Terada M, Fried J, Nudel U, et al: Proc Natl Acad Sci USA 74: 248–252, 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Leder A, Leder P: Cell 5: 319–322, 1975.PubMedCrossRefGoogle Scholar
  16. 16.
    Gusella J, Geller R, Clarke B, et al: Cell 9: 221–230, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Sato T, Friend C, De Harven E: Cancer Res 37: 1402–1417, 1971.Google Scholar
  18. 18.
    Jasmin C, Smadja-Joffe F, Klein B, et al: Cancer Res 36: 603–607, 1976.PubMedGoogle Scholar
  19. 19.
    Ostertag W, Pragnell IB, Krieg CF, et al: In Oncogenic Viruses and Host Genes. New York, Academic Press, in press.Google Scholar
  20. 20.
    Chang EH, Myers MW, Wong PKY, et al: Virology 77: 625–635, 1977.PubMedCrossRefGoogle Scholar
  21. 21.
    Billiau A, Heremans H, Allen PT, et al: Virology 73: 537–542, 1976.PubMedCrossRefGoogle Scholar
  22. 22.
    Pitha PM, Rowe WP, Oxman MN: Virology 70: 324–338, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Gresser I: In Cancer, A Comprehensive Treatise. New York, Plenum Press, 1978.Google Scholar
  24. 24.
    Youngner JS, Salvin SB: J Immunol 111: 1914–1922, 1973.PubMedGoogle Scholar
  25. 25.
    Trinchieri G, Santoli D, Dee RR, et al: Submitted for publication.Google Scholar
  26. 26.
    Curtis PJ, Weisman C: J Mol Biol 106: 1061–1075, 1976.CrossRefGoogle Scholar
  27. 27.
    Affrabris E, Pulciani S, Rossi GB: Microbiologica, in press, 1978.Google Scholar
  28. 28.
    Orkin SH, Harosi FI, Leder P: Proc Natl Acad Sci USA 72: 98–102, 1975.PubMedCrossRefGoogle Scholar
  29. 29.
    Chan LNL: Nature 261: 157–159, 1976.PubMedCrossRefGoogle Scholar
  30. 30.
    Reuben RC, Wife RL, Breslow R, et al: Proc Natl Acad Sci USA 73: 862–867, 1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Hiller G, Weber K: Nature 266: 181–183, 1977.PubMedCrossRefGoogle Scholar
  32. 32.
    Rossi GB, Aducci P, Gambari R, et al: Submitted for publication.Google Scholar
  33. 33.
    Stein G, Stein J, Thrall C, et al: In Stein GG, Kleinsmith LJ (eds): Chromosomal Proteins and their Role in the Regulation of Gene expression. New York, Academic Press, pp. 1–17, 1975.Google Scholar
  34. 34.
    Newman SA, Birbaum J, Yech GCT: Nature 259: 415–418, 1976.CrossRefGoogle Scholar
  35. 35.
    Paul J, Gillmour LS: J Mol Biol 34: 305–316, 1968.PubMedCrossRefGoogle Scholar
  36. 36.
    Lunadei M, Matteucci P, Ullu E, et al: Submitted for publication.Google Scholar
  37. 37.
    Peterson JL, Me Conckey EH: J Biol Chem 251: 555–558, 1976.Google Scholar
  38. 38.
    Keppel S, Allet B, Eisen H: Proc Natl Acad Sci USA 74: 653–656, 1977.PubMedCrossRefGoogle Scholar
  39. 39.
    Lau AF, Ruddon RW: Exp Cell Res 107: 35–46, 1977.PubMedCrossRefGoogle Scholar
  40. 40.
    Rossi GB, Matarese GP, Grappelli C, et al: Nature 267: 50–52, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Matarese GP, Rossi GB: J Cell Biol, 75: 344–354, 1977.PubMedCrossRefGoogle Scholar
  42. 42.
    Luftig RB, Conscience JF, Skoultchi A, et al: J Virol 23: 799–810, 1977.PubMedGoogle Scholar
  43. 43.
    Gusella JF, Housman D: Cell 8: 263–269, 1976.PubMedCrossRefGoogle Scholar
  44. 44.
    Rossi GB, Dolei A, Cioé L, et al: Texas Reps on Biol and Med. Interferon Issue. S Baron and F Dianzani, in press, 1977.Google Scholar
  45. 45.
    Rossi GB, Dolei A, Cioé L, et al: Oncogenic Viruses and Host Genes. Academic Press, New York, in press, 1977.Google Scholar
  46. 46.
    Rossi GB, Dolei A, Cioé L, et al: Proc Natl Acad Sci USA 74: 2036–2040, 1977.PubMedCrossRefGoogle Scholar
  47. 47.
    Farace MG, Ullu E, Fantoni A, et al: Submitted for publication.Google Scholar
  48. 48.
    Marku K, Dudock B: Nucleic Acid Res 1: 1385–1389, 1974.CrossRefGoogle Scholar
  49. 49.
    Fantoni A, Ullu E, Gambari R, et al: Ann Immunol (1st Pasteur) 127: 881–883, 1976.Google Scholar
  50. 50.
    Bordin S, Farace MG, Fantoni A: Biochim BiophysActa 257: 277–288, 1972.Google Scholar
  51. 51.
    Ramoni C, Matarese GP, Rossi GB, et al: J Gen Virol, in press, 1977.Google Scholar
  52. 52.
    Rossi GB, Marchegiani M, Matarese GP, et al: J Natl Cancer Inst 54: 993–996, 1975.PubMedGoogle Scholar
  53. 53.
    Gresser I: In Klein G, Weinhouse S (eds): Advances in Cancer Research. New York, Academic Press, pp. 97–140, 1972.Google Scholar
  54. 54.
    Kuwata T, Fuse A, Morigana N: J Gen Virol 33: 7–15, 1976.CrossRefGoogle Scholar
  55. 55.
    Stewart WE II, Gosser LB, Lockart RZ Jr: J Virol 7: 792–801, 1971.PubMedGoogle Scholar
  56. 56.
    Lindahl-Magnusson P, Leary P, Gresser I: Nature (New Biol) 237: 120–121, 1972.CrossRefGoogle Scholar
  57. 57.
    Fuse A, Kuwata T: J Gen Virol 32: 17–24, 1976.CrossRefGoogle Scholar
  58. 58.
    Macieira-Coelho A, Brouty-Boyè D, Thomas MT, et al: J Cell Biol 45: 415–419, 1971.CrossRefGoogle Scholar
  59. 59.
    Collyn d’Hooghe M, Brouty-Boyè D, Malaise EP, et al: Exp Cell Res 105: 73–11, 1977.CrossRefGoogle Scholar
  60. 60.
    Ida S, Hooks JJ, Siraganian RP, et al: J Exp Med 745: 892–899, 1977.CrossRefGoogle Scholar
  61. 61.
    Lindahl P, Gresser I, Leary P, et al: Proc Natl Acad Sci USA 73: 1284–1287, 1976.PubMedCrossRefGoogle Scholar
  62. 62.
    Gisler RH, Lindahl P, Gresser I: J Immunol 13: 438–444, 1974.Google Scholar
  63. 63.
    Lindahl P, Leary P, Gresser I: Proc Natl Acad Sci USA 69: 721–727, 1972.PubMedCrossRefGoogle Scholar
  64. 64.
    Nebert DW, Friedman RM: J. Virol 77: 193–197, 1973Google Scholar
  65. 65.
    Beck G, Poindron P, Illinger D, et al: FEBS lett 48: 297–300, 1974.PubMedCrossRefGoogle Scholar
  66. 66.
    Illinger D, Coupin G, Poindron P: J Gen Virol, 1978.Google Scholar
  67. 67.
    Huet C, Gresser I, Bandu MT, et al: Proc Soc Exp Biol Med 147: 52–57, 1974.PubMedGoogle Scholar
  68. 68.
    Johnson HM, Stanton GJ, Baron S: Proc Soc Exp Biol Med 154: 138–141, 1977.PubMedGoogle Scholar
  69. 69.
    Sonnenfeld G, Mandel AD, Merigan TG: Submitted for publication.Google Scholar
  70. 70.
    Crosby WH, Furth FW: Blood 11: 380–385, 1956.PubMedGoogle Scholar
  71. 71.
    Dianzani F, Baron S: Nature 257: 682–683, 1975.PubMedCrossRefGoogle Scholar
  72. 72.
    Ankel H, Chany C, Galliot B, et al: Proc Natl Acad Sci USA 70: 2360–2363, 1973.PubMedCrossRefGoogle Scholar
  73. 73.
    Besançon F, Ankel H: Nature 252: 478–480, 1974.PubMedCrossRefGoogle Scholar
  74. 74.
    Kohn LD, Friedman RM, Holmes JM, et al: Proc Natl Acad Sci USA 73: 3695–3699, 1976.PubMedCrossRefGoogle Scholar
  75. 75.
    Vengris SH, Reynolds FH Jr, Hollemberg MD, et al: Virology 72: 486–493, 1976.PubMedCrossRefGoogle Scholar
  76. 76.
    Lieberman D, Voloch Z, Aviv H, et al: Mol Biol Rep 1: 477–481, 1975.Google Scholar
  77. 77.
    Swetly P, Ostertag W: Nature 251: 642–644, 1974.PubMedCrossRefGoogle Scholar
  78. 78.
    Bourgeade MF, Chany C: Proc Soc Exp Biol Med 153: 501–504, 1976.PubMedGoogle Scholar
  79. 79.
    Weber JM, Stewart RB: J Gen Virol 25: 363–372, 1975.CrossRefGoogle Scholar
  80. 80.
    Bocci V, Pacini A, Pressina GP, et al: Experientia 33: 164–165, 1977.PubMedCrossRefGoogle Scholar
  81. 81.
    Stewart WE, De Clercq E, Billiau A, et al: Proc Natl Acad Sci USA 69: 1851–1854, 1972.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • L. Cioé
  • A. Dolei
  • G. B. Rossi
  • F. Belardelli
  • E. Affabris
  • R. Gambari
  • A. Fantoni

There are no affiliations available

Personalised recommendations