Skip to main content

Part of the book series: Springer Series in Microbiology ((SSMIC))

Abstract

Our work on Sulfolobus originally arose out of a determination to find a natural habitat for Thermoplasma. As discussed in the previous chapter, Thermoplasma was originally discovered as an acidophilic thermophile living in self-heated coal refuse piles. As this seemed an unlikely permanent habitat of the organism, I naturally thought about the hot, acid environments of Yellowstone. My determination to find Thermoplasma in Yellowstone was strengthened by an observation that Gary Darland had made during his attempt to define the upper temperature for life in acidic environments (see Brock and Darland, 1970). He had immersed microscope slides in the effluents of a number of acid, thermal streams, and by a quantification of the organisms that developed on the slides he could define the upper temperature limits. At that time, we were aware only of rod-shaped and filamentous bacteria, but in several of the effluents, at temperatures at which rods and filaments did not appear, there were odd-shaped spherical structures. Since most of these acid streams are sulfur-rich, I interpreted these structures as some sort of amorphous sulfur deposit. In retrospect, I should have realized that they were living organisms, since they not only were phase dark, but appeared on the slides in a distribution that could have been interpreted as microcolonies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beck, J. V. 1967. The role of bacteria in copper mining operations. Biotechn. Bioeng. 9, 487–497.

    Article  CAS  Google Scholar 

  • Bohlool, B. B. 1975. Occurrence of Sulfolobus acidocaldarius, an extremely thermophilic acidophilic bacterium, in New Zealand hot springs. Isolation and immunofluorescence characterization. Arch. Microbiol. 106, 171–174.

    Article  Google Scholar 

  • Bohlool, B. B. and T. D. Brock. 1974. Population ecology of Sulfolobus acidocaldarius. II. Immunoecological studies. Arch. Microbiol. 97, 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Bott, T. L. and T. D. Brock. 1969. Bacterial growth rates above 90°C in Yellowstone hot springs. Science 164, 1411–1412.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, C. L. 1974a. Molybdenite-leaching: use of a high-temperature microbe. J. Less-Common Metals 36, 237–247.

    Article  CAS  Google Scholar 

  • Brierley, C. L. 1974b. Extraction of copper from sulfide ores using a thermophilic microorganism. Final Technical Report to U.S. Bureau of Mines, Socorro, New Mexico.

    Google Scholar 

  • Brierley, C. L. and J. A. Brierley. 1973. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can. J. Microbiol. 19, 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, C. L. and L. E. Murr. 1973. Leaching: use of a thermophilic and chemoautotrophic microbe. Science 179, 488–489.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, J. 1966. Contribution of chemoautotrophic bacteria to the acid thermal waters of the Geyser Springs group in Yellowstone National Park. Ph.D. thesis, Montana State University, Bozeman. (The material on the Sulfolobus-like organism is on pp. 58–60.)

    Google Scholar 

  • Brock, T. D. 1967. Life at high temperatures. Science 158, 1012–1019.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D. 1974. Sulfolobus. In Bergey’s Manual of Determinative Bacteriology, 8th ed., R. E. Buchanan and N. E. Gibbons, eds. Williams and Wilkins, Baltimore, pp. 461–462.

    Google Scholar 

  • Brock, T. D., K. M. Brock, R. T. Belly, and R. L. Weiss. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D., S. Cook, S. Petersen, and J. L. Mosser. 1976. Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta 40, 493–500.

    Article  CAS  Google Scholar 

  • Brock, T. D. and G. K. Darland. 1970. Limits of microbial existence: temperature and pH. Science 169, 1316–1318.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D. and J. Gustafson. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32, 567–571.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. and J. L. Mosser. 1975. Rate of sulfuric-acid production in Yellowstone National Park. Geol. Soc. Am. Bull. 86, 194–198.

    Article  CAS  Google Scholar 

  • Brock, T. D. and K. O’Dea. 1977. Amorphous ferrous sulfide as a reducing agent for the culturing of anaerobes. Appl. Environ. Microbiol. 33, 254–256.

    PubMed  CAS  Google Scholar 

  • Cho, K. Y., C. H. Doy, and E. H. Mercer. 1967. Ultrastructure of the obligate halophilic bacterium Halobacterium halobium. J. Bacteriol. 94, 196–201.

    PubMed  CAS  Google Scholar 

  • deRosa, M., A. Gambacorta, G. Millonig, and J. D. Bu’Lock. 1974. Convergent characters of extremely thermophilic acidophilic bacteria. Experientia 30, 866.

    Article  CAS  Google Scholar 

  • Doudoroff, M., J. M. Wiame, and H. Wolochow. 1949. Phosphorolysis of sucrose by Pseudomonas putrefaciens. J. Bacteriol. 57, 423–427.

    CAS  Google Scholar 

  • Fawcett, R. G. and N. Collis-George. 1967. A filter-paper method for determining the moisture characteristic of soil. Aust. J. Exp. Agr. Anim. Hush. 7, 162–167.

    Article  Google Scholar 

  • Fliermans, C. B. and T. D. Brock. 1972. Ecology of sulfur-oxidizing bacteria in hot acid soils. J. Bacteriol. 111, 343–350.

    PubMed  CAS  Google Scholar 

  • Fliermans, T., T. and T. D. Brock. 1973. Assay of elemental sulfur in soil. Soil Sci. 115, 120–122.

    Article  CAS  Google Scholar 

  • Furuya, T., T. Nagumo, T. Itoh, and H. Kaneko. 1977. A thermophilic acidophilic bacterium from hot springs. Agric. Biol. Chem. 41, 1607–1612.

    Article  CAS  Google Scholar 

  • Langworthy, T. A., W. R. Mayberry, and P. F. Smith. 1974. Long chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius. J. Bacteriol. 119, 106–116.

    PubMed  CAS  Google Scholar 

  • McFadden, B. A. 1973. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. Bacteriol. Rev. 37, 289–319.

    PubMed  CAS  Google Scholar 

  • Mosser, J. L., B. B. Bohlool, and T. D. Brock. 1974a. Growth rates of Sulfolobus acidocaldarius in nature. J. Bacteriol. 118, 1075–1081.

    PubMed  CAS  Google Scholar 

  • Mosser, J. L., A. G. Mosser, and T. D. Brock. 1973. Bacterial origin of sulfuric acid in geothermal habitats. Science 179, 1323–1324.

    Article  PubMed  CAS  Google Scholar 

  • Mosser, J. L., A. G. Mosser, and T. D. Brock. 1974b. Population ecology of Sulfolobus acidocaldarius. I. Temperature strains. Arch. Microbiol. 97, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Pachmayr, F. 1960. Vorkommen und Bestimmung von Schwefelverbindungen im Mineralwasser. Doctoral disseration, Ludwig-Maximillians Universität, Munich, Germany.

    Google Scholar 

  • Peary, J. A. and R. W. Castenholz. 1964. Temperature strains of a thermophilic blue-green alga. Nature 202, 720–721.

    Article  Google Scholar 

  • Sato, M. 1960. Oxidation of sulfide ore bodies. II. Oxidation mechanisms of sulfide minerals at 25°C. Econ. Geol. 55, 1202–1231.

    Article  CAS  Google Scholar 

  • Shivvers, D. W. and T. D. Brock. 1973. Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J. Bacteriol. 114, 706–710.

    PubMed  CAS  Google Scholar 

  • Smith, D. W., C. G. Fliermans, and T. D. Brock. 1972. Technique for measuring 14CO2 uptake by soil microorganisms in situ. Appl. Microbiol. 23, 595–600.

    PubMed  CAS  Google Scholar 

  • Steensland, H. and H. Larsen. 1969. A study of the cell envelope of the Halobacteria. J. Gen. Microbiol. 55, 325–336.

    PubMed  CAS  Google Scholar 

  • Weiss, R. L. 1973. Attachment of bacteria to sulphur in extreme environments. J. Gen. Microbiol. 77, 501–507.

    CAS  Google Scholar 

  • Weiss, R. L. 1974. Subunit cell wall of Sulfolobus acidocaldarius. J. Bacteriol. 118, 275–284.

    PubMed  CAS  Google Scholar 

  • Zinder, S. H. and T. D. Brock. 1977. Sulfur dioxide in geothermal waters and gases. Geochim. Cosmochim. Acta 41, 73–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Thomas D. Brock

About this chapter

Cite this chapter

Brock, T.D. (1978). The Genus Sulfolobus . In: Thermophilic Microorganisms and Life at High Temperatures. Springer Series in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6284-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6284-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6286-2

  • Online ISBN: 978-1-4612-6284-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics