Skip to main content

Part of the book series: Springer Series in Microbiology ((SSMIC))

Abstract

I discussed the origin of acidic environments in Chapter 1. As noted, a solfatara is a location where elemental sulfur is precipitating out, due to surficial oxidation of H2S rising with steam from within the earth. Solfataras are generally areas with minimum amounts of ground water, and the circulation of water through the habitat is very shallow. Thus, except for the acidity and high-sulfate content, the chemistry of acidic geothermal waters is often closer to normal ground water than to deep geothermal water. A typical solfatara, Roaring Mountain, is shown in Figure 12.1a and an acid lake associated with another solfatara is shown in Figure 12.1b. Many solfataras are characterized by crumbling rock, hollow ground, and bleached color, due to acid attack on the rock-forming minerals and to leaching of color-forming components such as iron. The rate at which rocks disintegrate in solfatara areas is amazingly high. During the 10 years that I was in Yellowstone, I actually watched several large rocks disintegrate, and the boulder shown in Figure 12.2a, about the size of an automobile, split into two and collapsed. The power of acid is even more dramatically illustrated by the Grand Canyon of the Yellowstone River (Figure 12.2b), which is riddled with solfataric ground in the area where it is the deepest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aimer, B., W. Dickson, C. Ekstrom, E. Hornstrom, and V. Miller. 1974. Effects of acidification on Swedish lakes. Ambio 3, 29–36.

    Google Scholar 

  • Belly, R. T. and T. D. Brock. 1974. Widespread occurrence of acidophilic strains of Bacillus coagulans in hot springs. J. Appl. Bacteriol. 37, 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, H. D. 1969. Algae in relation to mine water. Castanea 34, 306–328.

    Google Scholar 

  • Brock, T. D. 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179, 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D. and M. L. Brock. 1970. The algae of Waimangu Cauldron (New Zealand): distribution in relation to pH. J. Phycol. 6, 371–375.

    Google Scholar 

  • Brock, T. D. and J. L. Mosser. 1975. Rate of sulfuric-acid production in Yellowstone National Park. Geol. Soc. Am. Bull. 86, 194–198.

    Article  CAS  Google Scholar 

  • Collins, N. C. 1972. Population biology of the brine fly Ephydra thermophila (Diptera: Ephydridae) associated with acid seepages in Yellowstone National Park, Wyoming. Ph.D. dissertation, University of Georgia, Athens.

    Google Scholar 

  • Collins, N. C. 1975. Tactics of host exploitations by a thermophilic water mite. Miscell. Publ. 9, 250–254.

    Google Scholar 

  • Darland, G. and T. D. Brock. 1971. Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 67, 9–15.

    Google Scholar 

  • Doemel, W. N. and T. D. Brock. 1971. pH of very acid soils. Nature 229, 574.

    Article  PubMed  CAS  Google Scholar 

  • Fliermans, C. B. and T. D. Brock. 1972. Ecology of sulfur-oxidizing bacteria in hot acid soils. J. Bacteriol. 111, 343–350.

    PubMed  CAS  Google Scholar 

  • Fogg, G. E. 1956. The comparative physiology and biochemistry of the blue-green algae. Bacteriol. Rev. 20, 148–165.

    PubMed  CAS  Google Scholar 

  • Fritsch, F. E. 1916. The morphology and ecology of an extreme terrestrial form of Zygnema (Zygogonium ericetorum Kütz.) Hansg. Ann. Bot. 30, 135–149.

    Google Scholar 

  • Gessner, F. 1959. Hydrobotanik, Vol. II. VEB Deutscher Verlag der Wissenschaften, Berlin, 701 p.

    Google Scholar 

  • Harp, G. L. and R. S. Campbell. 1967. The distribution of Tendipes plumosus (Linné) in mineral acid water. Limnol. Oceanogr. 12, 260–263.

    Article  Google Scholar 

  • Lund, J. W. G. 1962. Soil algae. In Physiology and Biochemistry of Algae, R. A. Lewin, ed. Academic Press, New York, pp. 759–770.

    Google Scholar 

  • Lund, J. W. G. 1967. Soil algae. In Soil Biology, A. Burges and F. Raw, eds. Academic Press, New York, pp. 129–148.

    Google Scholar 

  • Lynn, R. and T. D. Brock. 1969. Notes on the ecology of a species of Zygogonium (Kütz.) in Yellowstone National Park. J. Phycol. 5, 181–185.

    Article  CAS  Google Scholar 

  • Millar, W. N. 1973. Heterotrophic bacterial population in acid coal mine water; Flavobacterium acidurans. Int. J. Syst. Bacteriol. 23, 142–150.

    Article  Google Scholar 

  • Mosser, J. L., A. G. Mosser, and T. D. Brock. 1973. Bacterial origin of sulfuric acid in geothermal habitats. Science 179, 1323–1324.

    Article  PubMed  CAS  Google Scholar 

  • Negoro, K. 1944. Untersuchungen über die Vegetation der mineralogen-azidotrophen Gewässer Japans. Science Report of the Tokyo Bunrika Daigaku, Sect. B6, 232–373.

    Google Scholar 

  • Parsons, J. D. 1968. The effects of acid strip-mine effluents on the ecology of a stream. Arch. Hydrobiol. 65, 25–50.

    Google Scholar 

  • Prescott, G. W. 1962. Algae of the Western Great Lakes (rev. ed.). W. C. Brown Co., Dubuque, Iowa, 977 p.

    Google Scholar 

  • Rosa, K. and O. Lhotsky. 1971. Edaphische Algen und Protozoen im Isergebirge, Tschechoslowakei. Oikos 22, 21–29.

    Article  Google Scholar 

  • Schoen, R. 1969. Rate of sulfuric acid formation in Yellowstone National Park. Geol. Soc. Am. Bull. 80, 643–650.

    Article  CAS  Google Scholar 

  • Schoen, R. and G. G. Ehrlich. 1968. Bacterial origin of sulfuric acid in sulfurous hot springs. XXIII Int. Geol. Congr. 17, 171–178.

    Google Scholar 

  • Schoen, R. and R. O. Rye. 1970. Sulfur isotope distribution in solfataras, Yellowstone National Park. Science 170, 1082–1084.

    Article  PubMed  CAS  Google Scholar 

  • Tilden, J. E. 1898. Observations on some West American thermal algae. Bot. Gaz. 25, 89–105.

    Article  Google Scholar 

  • Ueno, M. 1958. The disharmonious lakes of Japan. Verh. Int. Ver. Limnol. 13, 217–226.

    Google Scholar 

  • West, G. S. 1916. Algae, Vol. 1. Cambridge University Press. West, W. and G. S. West. 1894. On some freshwater algae from the West Indies. J. Linnean Soc. 30, 264–280.

    Google Scholar 

  • Wirth, W. W. 1971. The brine flies of the genus Ephydra in North America (Diptera: Ephydridae). Ann. Entomol. Soc. Am. 64, 357–377.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Thomas D. Brock

About this chapter

Cite this chapter

Brock, T.D. (1978). A Sour World: Life and Death at Low pH. In: Thermophilic Microorganisms and Life at High Temperatures. Springer Series in Microbiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6284-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6284-8_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6286-2

  • Online ISBN: 978-1-4612-6284-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics