Soil-parathion surface interactions

  • Bruno Yaron
  • Sarina Saltzman
Part of the Residues of Pesticides and Other Contaminants in the Total Environment book series (RECT, volume 69)


There are three groups of factors which are considered in soil-pesticides interaction studies: the properties of pesticides, the properties of the soil, and the environmental factors which may affect these interactions. As is generally known, the soil is a very complex and nonhomogeneous medium and the soil environment is determined by climatic conditions and agricultural technology. Soil-pesticides interactions are, therefore, complex processes governed not only by each of the mentioned groups of factors but also by the integrated effects and interrelations.


Soil Organic Matter Organic Matter Content Nitro Group Sandy Loam Soil Chemical Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, C. W., and J. L. White: Factors influencing the adsorption, desorption and movement of pesticides in soils. Residue Reviews 32, 29 (1970).PubMedGoogle Scholar
  2. Bowman, B. T.: The effect of saturating cations on the adsorption of Dasanit, 0,0-diethyl 0-[p-(methyl sulfinyl) phenyl] phosphorothioate, by montmorillonite suspensions. Proc. Soil Sci. Soc. Amer. 37, 200 (1973).CrossRefGoogle Scholar
  3. Brown, G. (Ed.): The X-ray identification and crystal structures of clay minerals, 2nd ed. London: Mineral Soc. (1961).Google Scholar
  4. Burkhardt, C. C., and M. L. Fairchild: Bioassay of field-treated soils to determine bioactivity and movement of insecticides. J. Econ. Entomol. 60, 1602 (1967).Google Scholar
  5. Burns, T. G., and M. H. B. Hayes: Some physico-chemical principles involved in the adsorption of the organic cation paraquat by soil humic materials. Residue Reviews 52, 117 (1974).Google Scholar
  6. Chisholm, D., and A. W. Macphee: Persistence and effects of some pesticides in soil. J. Econ. Entomol. 65, 1010 (1972).PubMedGoogle Scholar
  7. Chopra, S. L., and F. C. Khullan: Degradation of parathion in soils. J. Indian Soc. Soil Sci. 19, 79 (1971).Google Scholar
  8. Chopra, S. L., N. Das, and B. Das: Adsorption and leaching of parathion in soils and effect of various physical factors on adsorption. J. Indian Soc. Soil Sci. 18, 437 (1970).Google Scholar
  9. Cipac Handbook, Vol. I: Analysis of technical and formulated pesticides. Collaborative Int. Pest. Anal. Council Ltd. (1970).Google Scholar
  10. Faust, S. D., and J. H. Suffet: Recovery, separation and identification of organic pesticides from natural and potable waters. Residue Reviews 15, 44 (1966).PubMedGoogle Scholar
  11. Gerstl, Z., and B. Yaron: Behavior of parathion on attapulgite surfaces. In A. Banin (Ed.): Agrochemicals in soils. Berlin: Springer-Verlag (1977).Google Scholar
  12. Getzin, L. W., and J. Rosefield: Organophosphorus insecticide degradation by heat-labile substances. J. Agr. Food Chem. 16, 598 (1968).CrossRefGoogle Scholar
  13. Gomaa, H. M., and S. D. Faust: Thermodynamic stability of selected organic pesticides in aquatic environments. In Faust, S. D., and J. V. Hunter (Eds.): Compounds in aquatic environments, pp. 371–376. New York: Dekker (1971).Google Scholar
  14. Graetz, D. A., G. Chesters, and T. C. Daniel: Parathion degradation in lake sediments. J. Water Pollut. Control Fed. 42 (2), R76 (1970).PubMedGoogle Scholar
  15. Greenland, D. J.: Interaction between clays and organic compounds in soils. Soils Fertil. 28, 415 (1965).Google Scholar
  16. Griffiths, D. C., and C. Smith: The insecticidal activity of diethyl and dimethyl analogues of azinphos, bromophos, carbophenthion and parathion on glass surface and in soil. Pest. Sci. 4, 335 (1973).CrossRefGoogle Scholar
  17. Griffiths, D. C., and C. Smith, and N. Walker: Microbial degradation of parathion. Meded. Rijksfac. Land-Wet. Gent 35, 805 (1970).Google Scholar
  18. Grim, R. E.: Clay mineralogy. New York: McGraw-Hill (1953).Google Scholar
  19. Hance, R. J.: Influence of sorption on the decomposition of pesticides. In: Sorption and transport processes in soils. SCI Monograph 37, 92 (1970).Google Scholar
  20. Harris, C. R.: Influence of soil type and soil moisture on the toxicity of insecticides in soils to insects. Nature 202, 724 (1964).PubMedCrossRefGoogle Scholar
  21. Harris, C. R.: Influence of soil type on the activity of insecticides in soil. J. Econ. Entomol. 59, 1221 (1966).Google Scholar
  22. Harris, C. R.: Further studies on the influence of soil moisture on the toxicity of insecticides in soil. J. Econ. Entomol. 60, 41 (1967).Google Scholar
  23. Harris, C. R.: Laboratory studies on the persistence of biological activity of some insecticides in soils. J. Econ. Entomol. 62, 1437 (1969).PubMedGoogle Scholar
  24. Harris, C. R.: Persistence and behavior of soil insecticides. In: Pesticides in the soil: Ecology, degradation and movement. Internat. Symp. on Pesticides in the Soil, pp. 58–64, Mich. State Univ., East Lansing (1970).Google Scholar
  25. Harris, C. R., and J. H. Mazurek: Comparison of the toxicity to insects of certain insecticides applied by contact and in the soil. J. Econ. Entomol. 57, 698 (1964).Google Scholar
  26. Harris, C. R., and H. J. Svec: Toxicology studies on cutworms. III. Laboratory investigations on the toxicity of insecticides to the black cutworm, with special reference to the influence of soil type, soil moisture, method of application and formulation on insecticide activity. J. Econ. Entomol. 61, 965 (1968).Google Scholar
  27. Hayes, M. H. B.: The adsorption of triazine herbicides on soil organic matter, including a short review on soil organic matter chemistry. Residue Reviews 32, 131 (1970).PubMedGoogle Scholar
  28. Iwata, Y., W. E. Westlake, and F. A. Gunther: Persistence of parathion in six California soils under laboratory conditions. Arch. Environ. Contam. Toxicol. 1, 84 (1973).PubMedCrossRefGoogle Scholar
  29. Kafkafi, U., A. M. Posner, and J. P. Quirk: Desorption of phosphate from kaolinite. Proc. Soil Sci. Soc. Amer. 31, 348 (1967).CrossRefGoogle Scholar
  30. King, P. H.: Movement of pesticides through soils. Diss. Abstr. B27, 3549 (1967).Google Scholar
  31. King, P. H.:, H. H. Yea, P. S. Warren, and C. W. RandalL: Distribution of pesticides in surface waters. J. Amer. Waterworks Assoc. 61, 483 (1969).Google Scholar
  32. Kipling, J. J.: Adsorption from solution of non-electrolytes. London: Academic Press, (1965).Google Scholar
  33. Klicer, L., and B. Yaron: Parathion recovery from soil after a short contact period. Bull. Environ. Contam. Toxicol. 13, 714 (1975).CrossRefGoogle Scholar
  34. Kononova, M. M.: Soil organic matter. London: Pergamon Press (1966).Google Scholar
  35. Konrad, J. G., and G. Chesters: Degradation in soils of ciodrin, an organophosphate insecticide. J. Agr. Food Chem. 17, 226 (1969).CrossRefGoogle Scholar
  36. Konrad, J. G., and G. Chesters, D. E. Armstrong, and G. Chesters: Soil degradation of diazinon, a phosphorothioate insecticide. Agron. J. 59, 591 (1967).CrossRefGoogle Scholar
  37. Konrad, J. G., and G. Chesters, G. Chesters, and D. E. Armstrong: Soil degradation of malathion, a phosphorodithioate insecticide. Proc. Soil Sci. Soc. Amer. 33, 259 (1969).CrossRefGoogle Scholar
  38. Leenheer, J. A., and J. L. Ahlrichs: A kinetic and equilibrium study of the adsorption of carbaryl and parathion upon soil organic matter surfaces. Proc. Soil Sci. Soc. Amer. 35, 700 (1971).CrossRefGoogle Scholar
  39. Lichtenstein, E. P.: Increase of persistence and toxicity of parathion and diazinon in soils with detergents. J. Econ. Entomol. 59, 985 (1966).Google Scholar
  40. Lichtenstein, E. P., and K. R. Schulz: The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion. J. Econ. Entomol. 5, 618 (1964).Google Scholar
  41. Lichtenstein, E. P., T. W. Fuhremann, and K. R. Schulz: Effect of sterilizing agents on persistence of parathion and diazinon in soils and water. J. Agr. Food Chem. 16, 870 (1968).CrossRefGoogle Scholar
  42. Lichtenstein, E. P., T. W. Fuhremann, and K. R. Schulz: Effect of detergents and inorganic salts in water on the persistence and movement of insecticides in soils. J. Econ. Entomol. 60, 1714 (1967).PubMedGoogle Scholar
  43. Melnikov, N. N.: Chemistry of pesticides. New York: Springer-Verlag (1971).Google Scholar
  44. Mills, A. C., and J. W. Biggar: Solubility-temperature effect on the adsorption of gamma and beta-BHC from aqueous and hexane solutions by soil materials. Proc. Soil Sci. Soc. Amer. 33, 210 (1969).CrossRefGoogle Scholar
  45. Mingelgrin, U., and B. Yaron: The effect of calcium salts on the degradation of parathion in sand and soil. Proc. Soil Sci. Soc. Amer. 38, 914 (1974).CrossRefGoogle Scholar
  46. Mingelgrin, U., and B. Yaron, L. Kliger, and A. Banin: Personal communication (1977a).Google Scholar
  47. Mingelgrin, U., and B. Yaron, S. Sltzman, and B. Yaron: A model for the catalysis of organophosphorus pesticide conversion by kaolinite. J. Soil Sci. Soc. 41, 240 (1977b).Google Scholar
  48. MoL, J. C. M., D. L. Harrison, and R. H. Telfer: Parathion: Toxicity to sheep and persistence on pasture and soil. N. Z. J. Agr. Res. 15, 306 (1972).Google Scholar
  49. Mortensen, J. L., and F. L. Himes: Soil organic matter. In F. E. Bear (ed.): Chemistry of the soil. New York: Reinhold (1964).Google Scholar
  50. Mortland, M. M.: Clay-organic complexes and interactions. Adv. Agron. 22, 75 (1970).CrossRefGoogle Scholar
  51. Mulla, M. S., G. P. Georghiou, and H. W. Cramer: Residual activity of organo-phosphorus insecticides in soil as tested against the eye gnat, Hippelates collusor. J. Econ. Entomol. 54, 805 (1961).Google Scholar
  52. Naumann, K.: Enfluss von Pflanzenschutzmittel auf die Bodenmikroflora. Mitt. biol. Bund Anst. Berlin 97, 109 (1959).Google Scholar
  53. Pesticide Manual (3rd ed.): British Crop Protection Council, London (1972).Google Scholar
  54. Prost, R., Z. Gerstl, B. Yaron, and J. Chaussmon: Infrared studies on parathionattapulgite interactions. In M. Horowitz, Ed.: Fate of pesticides in soils, pp. 108–115 (1976).Google Scholar
  55. Rosenfield, C., and W. Van Valkenburg: Decomposition of (0,0-dimethyl-0–2,4,5trichlorophenyl) phosphorothioate (Ronnel) adsorbed on bentonite and other clays. J. Agr. Food Chem. 13, 68 (1965).CrossRefGoogle Scholar
  56. Sacker, R. M., G. F. Lanus, and J. M. Deming: Bioactivity and persistence of some parathion formations in soil. J. Econ. Entomol. 65, 329 (1972).Google Scholar
  57. Saltzman, S.: Sorption and nonbiological degradation of parathion in soils and clays. D.Sc. thesis, Univ. of Louvain, Belgium (1977).Google Scholar
  58. Saltzman, S., L. Kliger, and B. Yaron: Adsorption-desorption of parathion as affected by soil organic matter. J. Agr. Food Chem. 20, 1224 (1972).CrossRefGoogle Scholar
  59. Saltzman, S., and U. Mingelgrin: Montmorillonite-parathion interactions in aqueous suspensions as affected by the mode of preparation. In A. Banin (ed.): Agro-chemicals in soil. Berlin: Springer-Verlag (1977).Google Scholar
  60. Saltzman, S., and B. Yaron: The role of water in the hydrolysis of parathion and methyl-parathion on kaolinite. J. Agr. Food Chem. 24, 739 (1976).CrossRefGoogle Scholar
  61. Saltzman, S. and S. Yariv: Infrared study of the sorption of phenol and p-nitrophenol by montmorillonite. Proc. Soil Sci. Soc. Amer. 39, 474 (1975).CrossRefGoogle Scholar
  62. Saltzman, S. and S. Yariv: Infrared and X-ray study of parathion-montmorillonite sorption complexes. J. Soil Sci. Soc. Amer. 40, 34 (1976).CrossRefGoogle Scholar
  63. S. Yariv, and B. Yaron: Parathion adsorption from aqueous solutions as influenced by soil components. In A. S. Tahori (ed.): Pesticide chemistry, Vol. VI, pp. 87100. New York: Gordon and Breach (1971).Google Scholar
  64. S. Yariv, and B. Yaron, and U. Mingelgrin: The surface catalyzed hydrolysis of parathion on kaolinite. Proc. Soil Sci. Soc. Amer. 38, 231 (1974).CrossRefGoogle Scholar
  65. Schnitzer, M., and S. U. Khan: Humic substances in the environment. New York: Dekker (1972).Google Scholar
  66. Schulz, K. R., E. P. Lichtenstein, T. T. Lang, and T. W. Fuhremann: Persistence and degradation of azinphosmethyl in soils as affected by formulation and mode of application. J. Econ. Entomol. 63, 432 (1970).PubMedGoogle Scholar
  67. Sethunathan, N.: Degradation of parathion in flooded acid soils. J. Agr. Food Chem. 21, 602 (1973a).CrossRefGoogle Scholar
  68. Sethunathan, N.: Organic matter and parathion degradation in flooded soil. Soil Biol. Biochem. 5, 641 (1973b).Google Scholar
  69. Sethunathan, N.: Microbial degradation of insecticides in flooded soil and anaerobic cultures. Residue Reviews 47, 143 (1973c).Google Scholar
  70. Spencer, W. F., W. J. Farmer, and M. M. Cliath: Pesticide volatilization. Residue Reviews 49, 1 (1973).Google Scholar
  71. Stewart, D. K. R., D. Chisolm, and M. T. H. Rajab: Long term persistence of parathion in soil. Nature 229, 47 (1970).CrossRefGoogle Scholar
  72. Swoboda, A. R., and G. W. Thomas: Movement of parathion in soil columns. J. Agr. Food Chem. 16, 923 (1968).CrossRefGoogle Scholar
  73. Theng, B. K. G.: The chemistry of clay-organic reactions. London: A. Holger (1974).Google Scholar
  74. Van Olphen, H.: An introduction to clay colloid chemistry. New York: Interscience (1963).Google Scholar
  75. Voerman, S., and F. H. Besmer: Residues of dieldrin, lindane, DDT and parathion in a light sandy soil after repeated application through a period of 15 years. J. Agr. Food Chem. 18, 717 (1970).CrossRefGoogle Scholar
  76. Weber, W. J., and J. P. Gould: Sorption of organic pesticides from aqueous solutions. Adv. Chem. Series 60, 280 (1965).Google Scholar
  77. Weidhaas, D. E., M. C. Bowman, and C. H. Schmidt: Loss of parathion and DDT to soil from aqueous dispersions and vermiculite granules. J. Econ. Entomol. 54, 175 (1961).Google Scholar
  78. Westlake, W. E., and F. A. Gunther: Persistence of parathion in six California soils under laboratory conditions. Arch. Env. Contam. Toxicol. 1, 84 (1973).CrossRefGoogle Scholar
  79. Wolfe, H. R., D. C. Staiff, J. F. Armstrong, and S. W. Comer: Persistence of parathion in soil. Bull. Environ. Contam. Toxicol. 10, 1 (1973).CrossRefGoogle Scholar
  80. Yarrv, S., J. D. Russell, and V. C. Farmer: Infrared study of the adsorption of benzoic acid and nitrobenzene in montmorillonite. Israel J. Chem. 4, 210 (1966).Google Scholar
  81. Yaron, B.: Chemical conversion of parathion on soil surfaces. Proc. Soil Sci. Soc. Amer. 39, 639 (1975).CrossRefGoogle Scholar
  82. Yaron, B., and S. Saltzman: Influence of water and temperature on adsorption of parathion by soils. Proc. Soil Sci. Soc. Amer. 36, 583 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Bruno Yaron
  • Sarina Saltzman
    • 1
  1. 1.Division of Soil Residues Chemistry, Institute of Soils and WaterAgricultural Research OrganizationBet DaganIsrael

Personalised recommendations