Skip to main content

Immobilized Enzymes

  • Chapter
  • 346 Accesses

Abstract

Because of their increasing importance in industry and medicine, a brief discussion of immobilized enzymes is warranted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axén, R., Porith, J., and Ernback, S., Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature (London) 214, 1302 (1967).

    Article  Google Scholar 

  2. Baum, G., Ward, F. B., and Weetall, H. H., Stability, inhibition and reactivation of acetylcholinesterase covalently coupled to glass. Biochim. Biophys. Acta 268, 411 (1972).

    PubMed  CAS  Google Scholar 

  3. Chang, T. M., Stabilization of enzymes by microencapsulation with a concentrated protein solution or by microencapsulation followed by cross-linking with glutaraldehyde. Biochem. Biophys. Res. Commun. 44, 1531 (1971).

    Article  PubMed  CAS  Google Scholar 

  4. Chang, T. M., The in vivo effects of semipermeable microcapsules containing Lasparaginase on 6C3HED lymphosarcoma. Nature (London) 229, 117 (1971).

    Article  CAS  Google Scholar 

  5. Chang, T. M., and Poznansky, M. J., Semipermeable microcapsules containing catalase for enzyme replacement in acatalasaemic mice. Nature (London) 218, 243 (1968).

    Article  CAS  Google Scholar 

  6. Chang, T. M., MacIntosh, F. C., and Mason, S. G., Semipermeable aqueous microcapsules. I. Preparation and properties. Can. J. Physiol. Pharmacol. 44, 115 (1966).

    Article  PubMed  CAS  Google Scholar 

  7. Corning Glass Works, German Patent 1,944,418.

    Google Scholar 

  8. Durand, G., Enzymologie des sols. Modifications de l’activité de l’uréase en présence de bentonite. C.R Hebd. Seances Acad. Sci. 259, 3397 (1964).

    PubMed  CAS  Google Scholar 

  9. Gardner, D. L., Falb, R. C., Kim, B. C., and Emmerling, D. C., Possible uremic detoxification via oral-injected microcapsules. Trans. Am. Soc. Artif. Intern. Organs 17, 239 (1971).

    PubMed  CAS  Google Scholar 

  10. Goldstein, L., Pecht, M., Blumberg, S., Atlas, D., and Levin, Y., Water-insoluble enzymes. Synthesis of a new carrier and its utilization for preparation of insoluble derivatives of papain, trypsin, and subtilopeptidase A. Biochemistry 9, 2322 (1970).

    Article  PubMed  CAS  Google Scholar 

  11. Gurvich, A. E., Quantitative determination of antibody content by means of protein antigens on paper. Biokhimiya 22, 977 (1957).

    CAS  Google Scholar 

  12. Hornby, W. E., Lilly, M. D., and Crook, E. M., The preparation and properties of ficin chemically attached to carboxymethylcellulose. Biochem. J. 98, 420 (1966).

    PubMed  CAS  Google Scholar 

  13. Katchalski, E., Silman, I., and Goldman, K., Effect of the microenvironment on the mode of action of immobilized enzymes. Adv. Enzymol. 34, 445 (1971).

    PubMed  CAS  Google Scholar 

  14. Kay, G., Lilly, M. D., Sharp, A. K., and Wilson, R. J. H., Preparation and use of porous sheets with enzyme action. Nature (London) 217, 741 (1968).

    Article  Google Scholar 

  15. Kobamoto, N., Lofroth, G., Camp, P., Van Amburg, G., and Augenstein, L., Specificity of trypsin adsorption onto cellulose, glass and quartz. Biochem. Biophys. Res. Commun. 24, 622 (1966).

    Article  CAS  Google Scholar 

  16. Mazia, D., and Hayashi, T., The activity of pepsin-albumin films. Arch. Biochem. Biophys. 43, 424 (1953).

    Article  PubMed  CAS  Google Scholar 

  17. McLaren, A. D., and Packer, L., Some aspects of enzyme reactions in heterogeneous systems. Adv. Enzymol. 33, 245 (1971).

    Google Scholar 

  18. Siegel, B. Z., and Siegel, S. M., Enhancement of peroxidase action by polysaccharides. Nature (London) 186, 391 (1960).

    Article  CAS  Google Scholar 

  19. Silman, I H, Albu-Weissenberg, M., and Katchalski, E., Some water-insoluble papain derivatives. Biopolymers 4, 441 (1966).

    Article  PubMed  CAS  Google Scholar 

  20. Surinov, B. P., and Manoilov, S. E., Production and properties of insoluble compounds of certain enzymes with cellulose. Biokhimiya 31, 337 (1966).

    Google Scholar 

  21. Updike, S. J., Wakamiya, R. T., and Lightfoot, E. N., Jr., Asparaginase entrapped in red blood cells: Action and survival. Science 193, 681 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. Vieth, W. R., Gilberg, S. G., and Wang, S. S., Performance of collagen-invertase complex membrane in a biocatalytic module. Trans. N.Y. Acad Sci. 34, 454 (1972).

    PubMed  CAS  Google Scholar 

  23. Weetall, H. H., Alkaline phosphatase insolubilized by covalent linkage to porous glass. Nature (London) 223, 959 (1968).

    Article  Google Scholar 

  24. Weetall, H. H, Trypsin and papain covalently coupled to porous glass: Preparation and characterization. Science 166, 615 (1969).

    Article  PubMed  CAS  Google Scholar 

  25. Weetall, H. H., Storage stability of water-soluble enzymes, enzymes covalently coupled to organic and inorganic carriers. Biochim Biophys. Acta 212, 1 (1970).

    PubMed  CAS  Google Scholar 

  26. Weetall, H. H., and Hersh, L. S., Urease covalently coupled to porous glass. Biochim. Biophys. Acta 185, 464 (1969).

    PubMed  CAS  Google Scholar 

  27. Weliky, N., and Weetall, H. H., The chemistry and use of cellulose derivatives for the study of biological systems. Immunochemistry 2, 293 (1965).

    Article  PubMed  CAS  Google Scholar 

  28. Wharton, C. W., Crook, E. M., and Brocklehurst, K., The nature of the perturbation of the Michaelis constant of the bromelain-catalyzed hydrolysis of a-N-benzoyl-L-arginine ethyl ester consequent upon attachment of bromelain to carboxymethyl-cellulose. Eur. J. Biochem. 6, 572 (1968).

    Article  PubMed  CAS  Google Scholar 

  29. Wilson, R. J. H., Kay, G., and Lilly, M. D., The preparation and kinetics of lactate dehydrogenase attached to water-insoluble particles and sheets. Biochem. J. 108, 845 (1968).

    PubMed  CAS  Google Scholar 

  30. Zaborsky, O., ed., “Immobilized Enzymes.” CRC Press, Cleveland, Ohio, 1972.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Aszalos, A.A. (1978). Immobilized Enzymes. In: Foldes, F.F. (eds) Enzymes in Anesthesiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6248-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6248-0_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6250-3

  • Online ISBN: 978-1-4612-6248-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics