Enzymatic Catalysis

  • A. A. Aszalos


Chemical reactions take place because molecules acquire an “activated state” in which enough energy is present for formation or breakage of a chemical bond. This amount of energy, referred to as the “activation energy,” is required to bring 1 mole of substrate to the activated state, at a given temperature. The activation energy of a reaction is lower if the reaction is catalyzed. Catalysts combine with the reactants and produce an activated state of the substances. These activated substances have less free energy than the inactivated substances in noncatalyzed reactions.


Enzymatic Reaction Enzymatic Catalysis Rate Enhancement Covalent Label Noncatalyzed Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B. R., Factors in the design of active-site-directed irreversible inhibitors. J. Pharm. Sci. 53, 347 (1964).PubMedCrossRefGoogle Scholar
  2. 2.
    Balls, A. K., and Aldrich, F. L., Acetyl-chymotrypsin. Proc. Natl. Acad. Sci. U.S.A. 41, 190 (1955).PubMedCrossRefGoogle Scholar
  3. 3.
    Balls, A. K., and Jansen, E. F., Stoichiometric inhibitor of chymotrypsin. Adv. Enzymol. 13, 321 (1952).Google Scholar
  4. 4.
    Bender, M. L., and Kezdy, F. J., Mechanism of action of proteolytic enzymes. Annu. Rev. Biochem. 34, 49 (1965).PubMedCrossRefGoogle Scholar
  5. 5.
    Bender, M. L., and Kezdy, F. J., The current status of the a-chymotrypsin mechanism. J. Am. Chem. Soc. 86, 3704 (1969).CrossRefGoogle Scholar
  6. 6.
    Bernhard, S. A., “The Structure and Function of Enzymes,” p. 117. Benjamin, New York, 1968.Google Scholar
  7. 7.
    Bernhard, S. A., “The Structure and Function of Enzymes,” p. 175. Benjamin, New York, 1968.Google Scholar
  8. 8.
    Blow, D. M., Birktoft, J. J., and Hartley, B. S., Role of a buried acid group in the mechanism of action of chymotrypsin. Nature (London) 221, 337 (1969).CrossRefGoogle Scholar
  9. 9.
    Bruice, T. C., Proximity effects and enzyme catalysis. In“The Enzymes” (P. D. Boyer, ed.), 3rd ed., Vol. 2, p. 217. Academic Press, New York, 1970.Google Scholar
  10. 10.
    Bruice, T. C., and Benkovic, S. J., “Bioorganic Mechanisms,” Vol. 1, p. 1. Benjamin, New York, 1966.Google Scholar
  11. 11.
    Cleland, W. W., The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochem. Biophys. Acta 67, 104 and 188 (1963).Google Scholar
  12. 12.
    Cram, D. J., and Guthrie, R. D., Electrophilic substitution at saturated carbon. XXVII. Carbanions as intermediates in the base-catalyzed methylene-azomethine rearrangement. J. Am. Chem. Soc. 88, 5761 (1966).Google Scholar
  13. 13.
    Dixon, M., and Webb, E. C., “Enzymes,” 2nd ed., p. 118. Academic Press, New York, 1964.Google Scholar
  14. 14.
    Drenth, J., Jansonius, J. N., Koekoek, R., Swen, H. M., and Wolthers, B. G., Structure of papain. Nature (London) 218, 929 (1968).CrossRefGoogle Scholar
  15. 15.
    Eigen, M., and de Maeyes, L., Relaxation methods. In“Investigations of Rates and Mechanisms of Reactions” (S. L. Friess, E. S. Lewin, and A. Weissberger, eds.), Vol. 8, Part II, p. 896. Wiley (Interscience), New York, 1963.Google Scholar
  16. 16.
    Elodi, P., Libor, S., and Mora, S., Localization of functional groups in dehydrogenases. FEBS Symp. 18, 17 (1970).Google Scholar
  17. 17.
    Findlay, D., Mathias, A. P., and Rabin, B. R., The active site and mechanism of action of bovine pancreatic ribonuclease. Biochem. J. 85, 139 (1962).PubMedGoogle Scholar
  18. 18.
    Green, D. E., A framework of principles for the unification of bioenergetics. Ann. N.Y. Acad. Sci. 227, 6 (1974).CrossRefGoogle Scholar
  19. 19.
    Gutfreund, H., “Introduction to the Study of Enzymes.” Wiley, New York, 1965.Google Scholar
  20. 20.
    Hamilton, C. L., Niemann, C., and Hammond, G. S., A quantitative analysis of the binding of N-acyl derivatives of alpha-amino acids by alpha chymotrypsin. Proc. Natl. Acad Sci. U.S.A. 55, 664 (1966).PubMedCrossRefGoogle Scholar
  21. 21.
    Hartsuck, J. A., and Tang, J., The carboxylate ion in the active center of pepsin. J. Biot. Chem. 247, 2575 (1972).Google Scholar
  22. 22.
    Inagami, T., and Sturtevant, J. M., Nonspecific catalyses by a-chymotrypsin and trypsin. J. Biot. Chem. 235, 1019 (1960).Google Scholar
  23. 23.
    Jenks, W. P., Strain and conformation change in enzymatic catalysis. In“Current Aspects of Biochemical Energetics” (N. O. Kaplan and E. P. Kennedy, eds.), p. 273. Academic Press, New York, 1966.Google Scholar
  24. 24.
    Ji, S., Energy and negentropy in enzymatic catalysis. Ann. N.Y. Acad Sci. 227, 419 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    Kartha, G., Bello, J., and Harker, D., Tertiary structure of ribonuclease. Nature (London) 213, 862 (1967).CrossRefGoogle Scholar
  26. 26.
    Keleti, T., Foldi, J., Erdei, S., and Tro, T. Q., Some thermodynamic data on d-glyceraldehyde-3-phosphate dehydrogenase action under optimal conditions. Biochim. Biophys. Acta 268, 285 (1972).PubMedGoogle Scholar
  27. 27.
    Koshland, D. E., Jr., and Neet, K. E., The catalytic and regulatory properties of enzymes. Annu. Rev. Biochem. 37, 359 (1968).PubMedCrossRefGoogle Scholar
  28. 28.
    Matthews, W., Sigler, P. B., Henderson, R., and Blow, D. M., Three-dimensional structure of tosyl-a-chymotrypsin. Nature (London) 214, 652 (1967).CrossRefGoogle Scholar
  29. 29.
    Nordlie, R. C., and Johns, P. T., The inhibition of microsomal glucose-6-phosphatase by metal-binding agents. Biochemistry 7, 1473 (1968).PubMedCrossRefGoogle Scholar
  30. 30.
    Nordlie, R. C., and Lygre, D. G., The mhibition by citrate of inorganic pyrophosphate-glucose phosphotransferase and glucose 6-phosphatase. J. Biol. Chem. 241, 3136 (1966).PubMedGoogle Scholar
  31. 31.
    North, A. T. C., and Phillips, D. C., X-ray studies of crystalline proteins. Prog. Biophys. Mol. Biot. 19, 84 (1969).Google Scholar
  32. 32.
    Pattabiraman, T. N., and Lawson, W. B., Stereochemistry of the active site of achymotrypsin. J. Biot. Chem. 247, 3029 (1972).Google Scholar
  33. 33.
    Rabin, B. R., Evans, N., and Rashed, N., The active site sulfhydryl group of alcohol dehydrogenases: A mechanism for the enzymatic catalysis. FEBS Symp. 18, 27 (1970).Google Scholar
  34. 34.
    Reeke, G. N., Hartsuck, J. A., Ludwig, M. L., Quiocho, F. A., Steitz, T. A., and Lipscomb, W. N., The structure of carboxypeptidase A. VI. Some results at 2.0-A resolution and the complex with glycyltyrosine at 2.8-A resolution. Proc. Natl. Acad Sci. U.S.A. 58, 2220 (1967).PubMedCrossRefGoogle Scholar
  35. 35.
    Singer, S. J., Covalent labeling of active sites. Adv. Protein Chem. 22, 1 (1967).PubMedCrossRefGoogle Scholar
  36. 36.
    Stryer, L. Implications of X-ray crystallographic studies of protein structure. Annu. Rev. Biochem. 37, 25 (1968).PubMedCrossRefGoogle Scholar
  37. 37.
    Vallee, B. L., and Williams, R. J. P., Metalloenzymes: The entatic nature of their active sites. Proc. Natl. Acad Sci. U.S.A. 59, 498 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • A. A. Aszalos

There are no affiliations available

Personalised recommendations