Skip to main content

Structure of Enzymes

  • Chapter
Enzymes in Anesthesiology
  • 355 Accesses

Abstract

The biologic functions of living organisms depend on complex systems of biochemical reactions catalyzed by specific proteins, the enzymes. Any alteration of the enzyme pattern may have far-reaching consequences for these organisms. The study of these specific proteins requires the combined skills of many scientists, such as biologists, physical chemists, physicists, biochemists and chemists. Because of the importance of the biochemical reactions carried out by enzymes, and because of the fascinating aspects of the research related to it, enzymology has become one of the most rapidly expanding sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackers, G. K., Analytical gel chromatography of proteins. Adv. Protein Chem. 24, 343 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. Aszalos, A., Kirschbaum, J., Ratych, O. T., Kraemer, N., Kocy, O., Frost, D., and Casey, J. P., Reversible dissociation of L asparaginase of Escherichia coli B. J. Pharm. Sci. 61, 791 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. Bailey, J. L., “Techniques in Protein Chemistry,” 2nd ed. Am. Elsevier, New York, 1967.

    Google Scholar 

  4. Banks, B. E. C., Doonan, S., Lawrence, A. J., and. Vernon, C. A., The molecular weight and other properties of aspartate amino transferase from pig heart muscle. Eur. J. Biochem. 5; 528 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Bender, M. L., and Kaiser, E. T., The mechanism of trypsin-catalyzed hydrolyses. The cinnamoyl-trypsin intermediate. J. Am. Chem. Soc. 84; 2556 (1962).

    Article  CAS  Google Scholar 

  6. Bernhard, S. A., “The Structure and Function of Enzymes,” p. 170. Benjamin, New York, 1968.

    Google Scholar 

  7. Bernhard, S. A., and Rossi, G. L.; On the substrate-induced stabilization of native enzyme protein conformation. In, “Structural Chemistry and Molecular Biology” (A. Rich and N. Davidson, eds.), p. 98. Freeman, San Francisco, California, 1968.

    Google Scholar 

  8. Beyehok, S., Circular dichroism of poly-a-amino acids and proteins. In“Poly-a-Aminoacids” (G. D. Fasman, ed.), p. 293. Dekker, New York, 1967.

    Google Scholar 

  9. Blake, C. C. F., Johnson, L. N., Mair, G. A., North, A. C. T., Phillips, D. C., and Sasma, V. R., Crystallographic studies of the activity of hen egg-white lysozyme. Proc. R. Soc. London, Ser. B 167; 378 (1967).

    Article  CAS  Google Scholar 

  10. Blow, D. M., Birktoft, J. J., and Hartley, B. S., Role of a buried acid group in the mechanism of action of chymotrypsin. Nature (London) 221, 337 (1969).

    Article  CAS  Google Scholar 

  11. Constantinides, S. M., and Deal, W. C., Jr., Reversible dissociation of tetrameric rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into dimers or monomers by adenosine triphosphate. J. Biol. Chem. 244, 5695 (1969).

    PubMed  CAS  Google Scholar 

  12. Constantinides, S. M., and Deal, W. C., Jr., Reversible dissociation of tetrameric 7.4 S rabbit muscle glyceraldehyde 3-phosphate dehydrogenase into 4.4 S dimers by ammonium sulfate and into 3.2 S monomers by KCI. J. Biol. Chem. 245, 246 (1970).

    PubMed  CAS  Google Scholar 

  13. Cornish-Bowden, A. J., and Koshland, D. E., Jr., The influence of binding domains on the nature of subunit interactions in oligomeric proteins. Application to unusual kinetic and binding patterns. J. Biol. Chem. 245, 6241 (1970).

    PubMed  CAS  Google Scholar 

  14. Cornish-Bowden, A. J., and Koshland, D. E., Jr., The quaternary structure of proteins composed of identical subunits. J. Biol. Chem. 246; 3092 (1971).

    PubMed  CAS  Google Scholar 

  15. Creeth, J. M., and Pain, R. H, The determination of molecular weights of biological macromolecules by ultracentrifuge methods. Prog. Biophys. Mol. Biol. 17, 217 (1967).

    Article  PubMed  CAS  Google Scholar 

  16. Edman, P., and Begg, G.; A protein sequenator. Eur. J. Biochem. 1, 80 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. Frieden, C., Glutamic dehydrogenase. I. The effect of co-enzyme on the sedimentation velocity and kinetic behavior. J. Biol. Chem. 234, 809 (1959).

    PubMed  CAS  Google Scholar 

  18. Gawronski, T. H., and Westhead, E. W., Equilibrium and kinetic studies on the reversible dissociation of yeast enolase by neutral salts. Biochemistry 8, 4261 (1969).

    Article  PubMed  CAS  Google Scholar 

  19. Giacometti, G., Recent experimental approaches to the thermodynamics of coupsmational transitions in polypeptides. In“Structural Chemistry and Molecular Biology” (A. Rich and N. Davidson, eds.), p. 67. Freeman, San Francisco, California 1968.

    Google Scholar 

  20. Grazi, E., Meloche, H., Martinez, G., Wood, W. A., and Horecker, B. L., Evidence for Schiff base formation in enzymatic aldol condensations. Biochem. Biophys. Res. Commun. 10, 4 (1963).

    Article  PubMed  CAS  Google Scholar 

  21. Greatzer, W. B., Ultraviolet absorption spectra of polypeptides. In“Poly a-Aminoacids” (G. D. Fasman, ed.), p. 177. Dekker, New York, 1967.

    Google Scholar 

  22. Hamilton, C. L., and McConnell, H. M., Spin labels. In“Structural Chemistry and Molecular Biology” (A. Rich and N. Davidson, eds.), p. 115. Freeman, San Francisco, California, 1968.

    Google Scholar 

  23. Haurowitz, F., ed., “The Chemistry and Function of Proteins,” p. 65. Academic Press, New York, 1963.

    Google Scholar 

  24. Haurowitz, F., ed., “The Chemistry and Function of Proteins,” p. 143. Academic Press, New York, 1963.

    Google Scholar 

  25. Hirs, C. H. W., and Timasheff, S. N., eds., “Methods in Enzymology,” Vol. 25, Academic Press, New York, 1972.

    Google Scholar 

  26. Ho, P. P. K., and Milikin, E. B., Multiple forms of L-asparaginase. Biochim. Biophys. Acta 206, 196 (1970).

    PubMed  CAS  Google Scholar 

  27. Kaplan, N. O., Nature of multiple molecular forms of enzymes. Ann. N. Y. Acad Sci. 151, 382 (1968).

    Article  PubMed  CAS  Google Scholar 

  28. Kirschbaum, J., Wriston, J. C., and Ratych, O. T., Subunit structure of L-asparaginase from Escherichia coli B. Biochim. Biophys. Acta 194, 161 (1967).

    Google Scholar 

  29. Koshland, D. E., Jr., Mechanism of transfer enzymes: In“The Enzymes” (P. D. Boyer, H. Lardy and K. Myrbäck, eds.), 2nd ed., Vol. 1, p. 305. Academic Press, New York, 1959.

    Google Scholar 

  30. Koshland, D. E., Jr., The active site and enzyme action. Ado. Enrymol. 22, 45 (1960).

    Google Scholar 

  31. Koshland, D. E., Jr., Neméthy, G., and Filmer, D., Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365 (1966).

    Article  PubMed  CAS  Google Scholar 

  32. Kumar, S., Dorsey, J. K., and Porter, J. W., Mechanism of dissociation of pigeon liver fatty acid synthetase complex into half-molecular weight subunits and their reassociation to enzymatically active complex. Biochem. Biophys. Res. Commun. 40, 825 (1970).

    Article  PubMed  CAS  Google Scholar 

  33. Leach, S. L., ed., “Physical Principles and Techniques of Protein Chemistry,” Part B. Academic Press, New York, 1970.

    Google Scholar 

  34. Wohn, H. B., McCrea, B. E., Suzuki, I., and Jackson, S., Association-dissociation reactions of mitochondria) isocitric dehydrogenase induced by protons and various ligands. J. Biol. Chem. 244, 2484 (1969).

    Google Scholar 

  35. Lipscomb, W. N., Hartsuck, J. A., Reeke, G. N., Jr., Guicho, F. A., Bethe, P. H., Ludwig, M. C., Steitz, T. A., Muirhead, H., and Coppola, J. C., The structure of carboxypeptidase.A. VII. Brookhaven Symp. Biol. 21, 24 (1968).

    PubMed  CAS  Google Scholar 

  36. Monod, J., Changeux, J. P., and Jacob, F., Allosteric proteins and cellular control systems. J. Mol. Biol. 6, 306 (1963).

    Article  PubMed  CAS  Google Scholar 

  37. Monod, J., Wyman, J., and Changeux, J. P., On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12, 88 (1965).

    Article  PubMed  CAS  Google Scholar 

  38. Morse, D. E., and Horecker, B. L., The mechanism of action of aldolases. Adv. Enzymol. 31, 125 (1968).

    PubMed  CAS  Google Scholar 

  39. Narasinga Rao, M. S., and Kegeles, G., An ultracentrifuge study of the polymerization of a-chymotrypsin. J. Ant Chem. Soc. 80, 5724 (1958).

    Article  Google Scholar 

  40. Nazaki, Y., and Tanford, C., Investigation of conformational changes, examination of titration behavior. Methods Enzymol. 11, 715 (1967).

    Article  Google Scholar 

  41. Needleman, S. B., ed., “Protein Sequence Determination.” Springer-Verlag, New York, 1970.

    Google Scholar 

  42. Noble, R. W., Relation between allosteric effects and changes in the energy of bonding between molecular subunits. J. Mol. Biol. 39, 479 (1969).

    Article  PubMed  CAS  Google Scholar 

  43. Patrick, J. W., and Lee, N., Subunit structure of L-arabinose isomerase from Escherichia coli. J. Biol. Chem. 244, 4277 (1969).

    PubMed  CAS  Google Scholar 

  44. Perutz, M. F., The first Sir Hans Krebs lecture. X-ray analysis, structure and function of enzymes. Eur. J. Biochem. 8, 445 (1969).

    Article  PubMed  CAS  Google Scholar 

  45. Phillips, D. C., The three-dimensional structure of an enzyme molecule. Sci. Am. 215, 78 (1966).

    Article  PubMed  CAS  Google Scholar 

  46. Pizer, L. I., Studies of the phosphoglyceric acid mutase reaction with radioactive substrates. J. Am. Chem. Soc. 80, 4431 (1958).

    Article  CAS  Google Scholar 

  47. Pohl, F. M., Cooperative conformational changes in globular proteins. Angew. Chem. 84, 931 (1972).

    Article  Google Scholar 

  48. Reich, J. G., Wangerman, G., Falch, N., and Rhode, K., A general strategy for parameter estimation from isosteric and allosteric-kinetic data and binding measurements. Eur. J. Biochem. 26, 368 (1972).

    Article  PubMed  CAS  Google Scholar 

  49. Schachman, H. K., “Ultracentrifugation in Biochemistry.” Academic Press, New York, 1959.

    Google Scholar 

  50. Steiner, R. F., “The Chemical Foundation of Molecular Biology: Forces Involved in the Stabilization of Protein Structure,” p. 133. Van Nostrand-Reinhold, Princeton, New Jersey, 1965.

    Google Scholar 

  51. Storke, G. R., Recent developments in chemical modification and segmental degradation of proteins. Adv. Protein Chem. 24, 2906 (1969).

    Google Scholar 

  52. Timasheff, S. N., Some physical probes of enzyme structure in solution. In“The Enzymes” (P. D. Boyer, ed.), 3rd ed., Vol. 2, p. 371. Academic Press, New York, 1970.

    Google Scholar 

  53. Vallee, B. L., and Riordan, J. F., Chemical approaches to the properties of active sites of enzymes. Annu. Rev. Biochem. 38, 733 (1969).

    Article  PubMed  CAS  Google Scholar 

  54. Vallee, B. L., and Williams, R. J., Metalloenzymes: The entatic nature of their active sites. Proc. Natl. Acad Sci. U.S.A. 59, 498 (1968).

    Article  PubMed  CAS  Google Scholar 

  55. Vessel, E. S., ed., “Multiple Molecular Forms of Enzymes,” Ann. N.Y. Acad. Sci. No. 157. N.Y. Acad. Sci., New York, 1968.

    Google Scholar 

  56. Vinograd, J., and Brunes, P., Band centrifugation of macromolecules in self-generating density gradients. II. Biopolymers 4, 131 (1966).

    Article  CAS  Google Scholar 

  57. Wetlaufer, D. B., Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 17, 304 (1962).

    Google Scholar 

  58. White, J. G., and Heagen, B., The fine structure of cell-free sickled hemoglobin. Am. J. Pathol. 58, 1 (1970).

    PubMed  CAS  Google Scholar 

  59. Whitehead, E., The regulation of enzyme activity and allosteric transition. Prog. Biophys. Mol. Biol. 21, 321 (1970).

    Article  PubMed  CAS  Google Scholar 

  60. Wofsy, L., Metzger, H., and Singer, S. J., Affinity labelling. Biochemistry 1, 1031 (1962).

    Article  PubMed  CAS  Google Scholar 

  61. Yang, J. T., Optical rotatory dispersion. In“Poly a-Aminoacids” (G. D. Fasman, ed.), p. 239. Dekker, New York, 1967.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Aszalos, A.A. (1978). Structure of Enzymes. In: Foldes, F.F. (eds) Enzymes in Anesthesiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6248-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6248-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6250-3

  • Online ISBN: 978-1-4612-6248-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics