Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 1))

Abstract

Gas-liquid contact, termed wet scrubbing, is one of the major techniques used in the control of air pollution from stationary sources. Pollutant gases and particles in the exhaust gas stream come into contact with a liquid, and mass transfer and particle collection occur to varying degrees. Wet scrubbing is the only major control technique in which high-efficiency removal of both gaseous and particle pollutants can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chemical Engineers’ Handbook, 5th ed. (R. H. Perry and C. H. Chilton, eds.), Chaps. 14 and 18. McGraw-Hill, New York, 1973.

    Google Scholar 

  2. S. Calvert, J. Goldshmid, D. Leith, and D. Mehta, Wet Scrubber System Study, Vols. 1 and 2. PB-213-016, APT, Inc., prepared for U.S. Environmental Protection Agency, July 1972.

    Google Scholar 

  3. Air Pollution Engineering Manual, AP-44 pp. 210–232. U.S. Public Health Service, 1967.

    Google Scholar 

  4. J. S. Eckert et al, Ing. Eng. Chem. 59, 42 (1967).

    Article  Google Scholar 

  5. G. Nonhebel (ed.), Gas Purification Processes for Air Pollution Control. Newnes-Butterworths, London, 1972.

    Google Scholar 

  6. P. V. Danckwerts, Gas-Liquid Reactions. McGraw-Hill, New York, 1970.

    Google Scholar 

  7. Ullmanns Encyklopadie der Technischen Chemie, 4th ed., Vol. 2, pp. 575–599. Verlag Chemie, Weinheim/Bergstrasse, 1972.

    Google Scholar 

  8. R. E. Treybal, Mass-Transfer Operations. McGraw-Hill, New York, 1968.

    Google Scholar 

  9. F. A. Zenz, Chem. Eng. 120–138 (Nov. 1972).

    Google Scholar 

  10. A. P. Lamonrelle and O. C. Sandall, Chem. Eng. Sci. 27, 1035 (1972).

    Article  Google Scholar 

  11. G. D. Menez and O. C. Sandall, Ind. Eng. Chem. Fundam. 13, 72 (1974).

    Article  CAS  Google Scholar 

  12. G. E. H. Joosten and P. V. Danckwerts, Chem. Eng. Sci. 28, 453 (1973).

    Article  CAS  Google Scholar 

  13. S. Hatta, Tech. Rep. Tokohu Imp. Univ. 10, 119 (1932).

    CAS  Google Scholar 

  14. P. A. Ramachandran and M. M. Sharma, Trans. Instr. Chem. Engr. 49, 253 (1971).

    CAS  Google Scholar 

  15. B. W. Lancaster and W. Strauss, Ind. Eng. Chem. Fundam. 10 (3), 362 (1971).

    Article  Google Scholar 

  16. S. Calvert and N. G. Jhaveri, J. Air Pollut. Contr. Assoc. 24, 946 (1974).

    CAS  Google Scholar 

  17. R. J. Davis and J. Truitt, Instruments and Control Systems, pp. 68–70, 1972.

    Google Scholar 

  18. L. E. Sparks and M. J. Pilat, Atmos. Environ. 4, 1 (1970).

    Article  Google Scholar 

  19. B. W. Lancaster and W. Strauss, in Air Pollution Control, Part I ( W. Strauss, ed.). Wiley-Interscience, New York, 1971, p. 377.

    Google Scholar 

  20. K. Onda, H. Takeuchi, and Y. Okumoto, J. Chem. Eng. Jpn. 1, 56 /62 (1968).

    Google Scholar 

  21. T. H. Chilton and A. P. Colburn, Ind. Eng. Chem. 27, 255 (1935).

    Article  CAS  Google Scholar 

  22. W. L. McCabe and E. W. Thiele, Ind. Eng. Chem. 7, 605 (1925).

    Article  Google Scholar 

  23. D. W. VanKrevelen and P. J. Hoftyzer, Chem. Eng. Sci. 2, 145 (1953).

    Article  CAS  Google Scholar 

  24. H. Kiirten and P. Magnussen, Reaktionsapparate für Gas-Flüssig Reaktionen, in Ullmanns Encyklopadie der Technischen Chemie, 4th ed., Vol. 3. Verlag Chemie, Weinheim/Bergstrasse, 1973, p. 357.

    Google Scholar 

  25. O. Nagel, H. Kürten and R. Sinn, Chem. Ing. Tech. 44, 14 (1972).

    Google Scholar 

  26. O. Nagel, H. Kiirten, and B. Hegner, Chem. Ing. Tech. 45, 913 (1973).

    Article  CAS  Google Scholar 

  27. W. W. Eckenfelder, Chem. Engr. Prog. 52 (7), 290 (1956).

    Google Scholar 

  28. K. T. Semrau, J. Air Pollut. Contr. Assoc. 10, 200 (1960); 13, 587 (1974).

    Google Scholar 

  29. S. Calvert, J. Air Pollut. Contr. Assoc. 24, 929 (1974).

    Google Scholar 

  30. H. Krockta and R. L. Lucas, J. Air Pollut. Contr. Assoc. 22, 459 (1974).

    Google Scholar 

  31. Proc. 2nd Int. Lime I Limestone Wet-Scrubbing Symp. 1, 2, APTD 1161 (June 1972).

    Google Scholar 

  32. H. S. Rosenberg and R. B. Engdahl, Battelle Memorial Institute, Columbus, Ohio, March 30, 1973. Report (to American Electric Power Service Corporation) on Status of Sulfur Dioxide Control in Power Stations.

    Google Scholar 

  33. S. Calvert, D. Leith, and D. Mehta, AIChE Symp. Ser. 70 (137), 357 (1974).

    Google Scholar 

  34. K. Holzer, Staub-Reinhalt Luft 34 (10), 360 (1974).

    CAS  Google Scholar 

  35. M. Wicke, Fortschrittsber. VDI Zeitschr. Reihe 3, 33 (1971), 68 pp.

    Google Scholar 

  36. T. T. Mercer and H. Y. Chow, J. Colloid Interface Sci. 27, 75 (1968).

    Article  Google Scholar 

  37. T. K. Sherwood, G. H. Shipley, and F. A. L. Holloway, Ind. Eng. Chem. 30, 765 (1938).

    Article  CAS  Google Scholar 

  38. J. S. Eckert, Chem. Eng. Prog. 57, 54 (1961).

    Google Scholar 

  39. S. Calvert, N. C. Jhaveri, and S. Yung, Fine Particle Scrubber Performance Tests, EPA-650/2-74-093, October 1974. U.S. Environmental Protection Agency, Washington, D.C. 20460.

    Google Scholar 

  40. C. Strumillo, J. A. Adamiec, and T. Kudra, Int. Chem. Eng. 14 (4), 652 (1974).

    Google Scholar 

  41. W. Reichelt, Chem. Ing. Tech. 45 (1), 25 (1973).

    Article  CAS  Google Scholar 

  42. A. Kossev, G. Peev, and D. Elenkov, Verfahrenstechnik 5(8), 340 (1971).

    Google Scholar 

  43. I. G. Blyakher, L. Y. Zhivaikin, and N. A. Yurovskaya, Int. Chem. Eng. 7 (3), 485 (1967).

    Google Scholar 

  44. O. S. Balabekov, P. G. Romankov, E. Y. Tarat, and M. F. Mikhalev, Zh. Prikl. Khim. 44 (5), 1061 (1971).

    CAS  Google Scholar 

  45. R. M. Statnick and D. C. Drehmel, Paper 74–231, 67th Annual Meeting of the Air Pollution Control Association, Denver, Colorado, June 9–13 (1974).

    Google Scholar 

  46. K. T. Whitby, ASHRAEJ. 7 (9), 56 (1965).

    Google Scholar 

  47. S. K. Friedlander, AIChE J. 3, 43 (1957).

    Article  Google Scholar 

  48. C. Orr, Jr., Particle Technology. Macmillan, New York, 1966.

    Google Scholar 

  49. C. P. Kerr, Ind. Eng. Chem. Process Res. Develop. 13, 222 (1974).

    Article  Google Scholar 

  50. R. H. Boll, Ind. Eng. Chem. Fundam. 12, 40 (1973).

    Article  Google Scholar 

  51. S. Nukiyama and Y. Tanasawa, Trans. Soc. Mech. Eng. (Japan) 4, 86 (1938).

    Google Scholar 

  52. R. H. Boll, L. R. Flais, P. W. Maurer, and W. L. Thompson, J. Air Pollut. Contr. Assoc. 24, 934 (1974).

    Google Scholar 

  53. H. E. Hesketh, J. Air Pollut. Contr. Assoc. 24, 931 (1974).

    Google Scholar 

  54. D. Leith and D. Mehta, Atmos. Environ. 7 (5), 527 (1973).

    Article  Google Scholar 

  55. S. Calvert, I. L. Joshnani, and S. Yung, J. Air Pollut. Contr. Assoc. 27, 971 (1974).

    Google Scholar 

  56. P. N. Cheremisinoff and R. A. Young, Pollut. Eng. 24–33 (July 1974).

    Google Scholar 

  57. A. B. Adams, Jr., J. Air Pollut. Contr. Assoc. 26, 303 (1976).

    Google Scholar 

  58. U.S. Patent 3,375,058 (1968). G. Petersen, V. Fattinger, and W. Jager, assigned to Firma Hugo Petersen, Wiesbaden, Germany.

    Google Scholar 

  59. S. K. Kempner, E. N. Seiler, and D. H. Bowman, J. Air Pollut. Contr. Assoc. 20, 139 (1970).

    CAS  Google Scholar 

  60. G. Nonhebel (ed.), Gas Purification Processes for Air Pollution Control. Newnes-Butterworths, London, 1972, pp. 164–187.

    Google Scholar 

  61. M. W. First and F. J. Viles, J. Air Pollut. Contr. Assoc. 21, 122 (1971).

    CAS  Google Scholar 

  62. A. V. Slack, H. L. Falkenberry, and R. E. Harrington, J. Air Pollut. Contr. Assoc. 22, 159 (1972).

    CAS  Google Scholar 

  63. A. V. Slack, Sulfur Dioxide Removal from Waste Gases. Noyes Data Corporation, Park Ridge, N.J., 1971.

    Google Scholar 

  64. L. W. Nannen, R. E. West, and F. Kreith, J. Air Pollut. Contr. Assoc. 24, 29 (1974).

    CAS  Google Scholar 

  65. M. Epstein and F. T. Princiotta, in Recent Advances in Air Pollution Control, AIChE Symp. Ser. 137, 70, 189 (1974).

    Google Scholar 

  66. National Research Council, International Critical Tables of Numerical Data, Vol. Ill, p. 302. McGraw-Hill, 1926.

    Google Scholar 

  67. R. Germendonk, Chem. Ing. Tech. 37, 1136 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 The HUMANA Press Inc.

About this chapter

Cite this chapter

Altwicker, E.R. (1979). Wet Scrubbing. In: Wang, L.K., Pereira, N.C. (eds) Air and Noise Pollution Control. Handbook of Environmental Engineering, vol 1. Humana Press. https://doi.org/10.1007/978-1-4612-6236-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6236-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-6238-1

  • Online ISBN: 978-1-4612-6236-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics