Advertisement

Radiation

  • Leo J. Fritschen
  • Lloyd W. Gay
Part of the Springer Advanced Texts in Life Sciences book series (SATLIFE)

Abstract

Radiation is the process by which energy can be transferred from one body to another through electromagnetic waves in the absence of an intervening medium. If an intervening medium is present, it must be at least partially transparent in order for the radiant energy transfer to take place. Energy is continuously radiated from all substances that are above absolute zero (0 K) in temperature. If a black body is warmer than its environment, it radiates more energy than it receives and the environment receives more energy than it radiates. There is, thus, a net transfer of energy from the warm black body to the cooler environment. The basic problem is to determine the direction and rate of this net energy transfer.

Keywords

Internal Resistance Longwave Radiation Global Solar Radiation Shadow Band Photopic Vision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Coulson, Kinsell L. (1975). Solar and Terrestrial Radiation. Academic, New York. 322 pp.Google Scholar
  2. Reifsnyder, W. E., and H. W. Lull (1965). Radiant energy in relation to forest. U.S. Dep. Agric. Tech. Bull. 1344.Google Scholar
  3. Robinson, N. (1966). Solar Radiation. Elsevier, New York. 347 pp.Google Scholar
  4. World Meteorological Organization (1971). Guide to Meteorological Instrument and Observing Practices. World Meteorological Organization, Geneva, Switzerland.Google Scholar
  5. I.G.Y. (1958). Instrumentation Manual 6, Radiation Instruments and Measurements. Pergamon, New York, N.Y.Google Scholar

Literature Cited

  1. Alrich, L. B., H. Wexler, S. Fritz, I. F. Hand, A. Court and W. P. Mellen, 1947. Comments by Readers. Sci. 106:225.Google Scholar
  2. Blackwell, M. J. (1954). Five Years Continuous Recording of Daylight Illumination at Kew Observatory. Met. Res. Ctr. Air Ministry, London M.R.P. No. 831.Google Scholar
  3. Drummond, A. J. (1956). Notes on the measurement of natural illumination I. Some characteristics of illumination recorders. Arch. Meteorol. Geophys. Bioklimatol. Ser. B7:437.CrossRefGoogle Scholar
  4. Fritschen, L. J. (1963). Construction and evaluation of a miniature net radiometer. J. Appl. Meteorol. 2:165–172.CrossRefGoogle Scholar
  5. Fritschen, L. J. (1965). Miniature net radiometer improvements. J. Appl. Meteorol. 4:528–532.CrossRefGoogle Scholar
  6. Funk, J. P. (1959). Improved polythene-shield net radiometer. J. Sci. Instrum. 36:267–270.CrossRefGoogle Scholar
  7. Funk, J. P. (1961). A note on the longwave calibration of convectively shielded net radiometers. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 11:70–74.Google Scholar
  8. Funk, J. P. (1962). A net radiometer designed for optimum sensitivity and a ribbon thermopile used in a miniature version. J. Geophys. Res. 67:2753–2760.CrossRefGoogle Scholar
  9. Gier, J. T. and R. V. Dunkle (1951). Total hemispherical radiometers. AIEE Trans. 70: 1–7.Google Scholar
  10. Horowitz, J. L. (1969). An easily constructed shadow-band for separating direct and diffuse solar radiation. Sol. Energy 12:543–545.CrossRefGoogle Scholar
  11. Idso, Sherwood, B. (1971). A simple technique for the calibration of long-wave radiation probes. Agric. Meteorol. 8:235–243.CrossRefGoogle Scholar
  12. Johnson, D. S. (1956). Progress Report on Radiometer Test. U.S. Weather Bureau unpublished mimeogr. rpt. December, 20 pp.Google Scholar
  13. Latimer, J. R. (1971). Radiation measurement. International Field Year for the Great Lakes. Tech. Manual Ser. 2. Canadian National Committee for the International Hydrological Decade. No. 8 Building, Carling Avenue, Ottawa, Canada, p. 52.Google Scholar
  14. MacDonald, T. H. and N. B. Foster (1954). Pyrheliometer calibration program of the U.S. Weather Bureau. Mon. Weather Rev. 82:219–227.CrossRefGoogle Scholar
  15. Norman, J. M., C. B. Tanner, and G. W. Thurtel (1969). Photosynthetic light for measurements in plant canopies. Agron. J. 61:840–843.CrossRefGoogle Scholar
  16. Schulze, R. (1961). Über die Verwendung von Polyäthylen für Strahlungsmessungen. Arch. Meteorol. Geophys. Bioklimat. Ser. B11:211–223.CrossRefGoogle Scholar
  17. Suomi, V. E., M. Franssila, and N. F. Islitzer (1954). An improved net-radiation instrument. J. Meteorol. 11:276–282.CrossRefGoogle Scholar
  18. Tanner, C. B., C. A. Federer, T. A. Black, and J. B. Swan (1969). Economical Radiometer, Theory, Performance, and Construction. Research Report 40. College of Agriculture and Life Sciences, Univ. of Wisconsin, Madison, Wisc. p. 86.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Leo J. Fritschen
    • 1
  • Lloyd W. Gay
    • 2
  1. 1.College of Forest ResourcesUniversity of WashingtonSeattleUSA
  2. 2.School of Renewable Natural ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations