Effect of herbicides on plant cell membrane lipids

  • C. M. Rivera
  • Donald Penner
Conference paper
Part of the Residue Reviews book series (RECT, volume 70)


For herbicides to be phytotoxic, they must move through a membrane in the roots or the shoots. Plant membranes are involved as structural components of the cell and also function in cell permeability, ion transport, electron transport, and enzyme activity. Since membrane lipids are intimately associated with many of the membrane functions, any alteration of the lipid components could have a profound effect on membrane function or structure (ANDERSON and THOMPSON 1973).


Fatty Acid Composition Membrane Lipid Polar Lipid Membrane Structure Chilling Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. P.: Seasonal variation of terpenoid constituents in natural populations of Juniperus Pinchotii Sudw. Phytochem. 9, 397 (1970).Google Scholar
  2. Anderson, J. L., and J. P. Schaelling: Effect of pyrazon on bean chloroplast ultra-structure. Weed Sci. 18, 455 (1970).Google Scholar
  3. Anderson, J. L., and W. W. Thomson: The effects of herbicides on the ultrastructure of plant cells. Residue Reviews 47, 167 (1973).PubMedGoogle Scholar
  4. Armarego, W. L. F., M. J. Canny, and S. A. Cox: Metal-chelating properties of plant-growth substances. Nature 183, 1176 (1959).Google Scholar
  5. Ashton, F. M., E. M. Gifford, Jr., and T. Bisalputra: Structural changes in Phase-olus vulgaris induced by atrazine. I. Histological changes. Bot. Gaz. 124, 329 (1963a).Google Scholar
  6. Ashton, F. M., E. M. Gifford, Jr., and T. Bisalputra: Structural changes in Phaseolus vulgaris induced by atrazine. II. Effects on fine structure of chloroplasts. Bot. Gaz. 124, 336 (19Google Scholar
  7. Baur, J. R., R. W. Bovey, P. S. Baur, and Zenab El-Seify: Effects of paraquat on the ultrastructure of mesquite mesophyll cells. Weed Research 9, 81 (1969).Google Scholar
  8. Bethlenfalvay, G., and R. F. Norris: Phytotoxic action of desmedipham: Influence of temperature and light intensity. Weed Sci. 23, 499 (1975).Google Scholar
  9. Blackman, G. E., and R. C. Robertson-Cuninghame: The influence of pH on the phytotoxicity of 2, 4-dichlorophenoxyacetic acid to Lemna minor. New Phytol. 52, 71 (1953).Google Scholar
  10. Boger, P., B. Beese, and R. Miller: Long-term effects of herbicides on the photo-synthetic apparatus. II. Investigations on bentazone inhibition. Weed Research 17, 61 (1977).Google Scholar
  11. Bradbury, I. K., and R. Ashford: The effect of frost on the response of spring wheat to 2, 4-D. Weed Sci. 18, 235 (1970).Google Scholar
  12. Branton, D.: Membrane structure. Ann. Rev. Plant Physiol. 20, 209 (1969).Google Scholar
  13. Burt, G. W.: Factors affecting thiocarbamate injury to corn. II. Soil incorporation, seed placement, cultivar, leaching, and breakdown. Weed Sci. 24, 327 (1976).Google Scholar
  14. Bus, J. S., S. D. Aust, and J. E. Gibson: Superoxide-and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem. Biophys. Res. Comm. 58, 749 (1974).PubMedGoogle Scholar
  15. Bush, P. B., and C. Grunwald: Sterol changes during germination of Nicotiana tabacum seeds. Plant Physiol. 50, 69 (1972).PubMedGoogle Scholar
  16. Chandler, J. M., and P. W. Santelmann: Interactions of four herbicides with Rhizoctonia solani on seedling cotton. Weed Sci. 16, 453 (1968).Google Scholar
  17. Chang, F. Y., G. R. Stephenson, G. W. Anderson, and J. D. Bandeen: Control of wild oats in oats with barban plus antidote. Weed Science 22, 546 (1974).Google Scholar
  18. Chang, I., and C. L. Foy: Effects of picloram on mitochondrial swelling and ATPase. Weed Sci. 19, 54 (1971).Google Scholar
  19. Chapman, D.: Physical studies of lipid-lipid and lipid-protein interactions. Lipids 4, 251 (1969).PubMedGoogle Scholar
  20. Chapman, D.: Lipid dynamics in cell membranes. Pestic. Sci. 4, 839 (1973).Google Scholar
  21. Chapman, D., J. Urbina, and K. M. Keough: Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J. Biol. Chem. 249, 2512 (1974).PubMedGoogle Scholar
  22. Christiansen, M. N., H. R. Carns, and D. J. Slyter: Stimulation of solute loss from radicles of Gossypium hirsutum L. by chilling, anaerobiosis, and low pH. Plant Physiol. 46, 53 (1970).PubMedGoogle Scholar
  23. Cook, G. M. W.: Membrane structure and function. Ann. Rev. Plant Physiol. 22, 97 (1971).Google Scholar
  24. Cook, R. J., and N. T. Flentje: Chlamydospore germination and germling survival of Fusarium solani f. pisi in soil as affected by soil water and pea seed exudation. Phytopathol. 57, 178 (1967).Google Scholar
  25. Cowley, P. S., and F. J. Evans: Variation in the amounts of glucoside and lipid phytosterols in Digitalis purpurea during germination. Planta Medica 22, 88 (1972).PubMedGoogle Scholar
  26. Crafts, A. S.: Weed Control: Applied botany. Amer. J. Bot. 43, 548 (1956).Google Scholar
  27. Crafts, A. S.: Translocation in plants. New York: Holt, Rinehart and Winston (1961).Google Scholar
  28. Cullen, J., M. C. Phillips, and G. G. Shipley: The effects of temperature on the composition and physical properties of the lipids of Pseudomonas fluorescens. Biochem. J. 125, 733 (1971).PubMedGoogle Scholar
  29. Davis, D. L., and C. G. Poneleit: Sterol accumulation and composition in developing Zea mays L. kernels. Plant Physiol. 54, 794 (1974).PubMedGoogle Scholar
  30. Dawson, R. M. C., N. Clarke, and R. H. Quarles: N-acylphosphatidylethanolamine, a phospholipid that is rapidly metabolized during the early germination of pea seeds. Biochem. J. 114, 265 (1969).PubMedGoogle Scholar
  31. De La Roche, I. A., C. J. Andrews, M. K. Pomeroy, P. Weinberger, and M. Kates: Lipid changes in winter wheat seedlings (Triticum aestivum) at temperatures inducing cold hardiness. Can. J. Bot. 50, 2401 (1972).Google Scholar
  32. Demel, R. A., S. C. Kinsky, and L. L. M. VAN Deenen: Penetration of lipid mono-layers by polyene antibiotics. Correlation with selective toxicity and mode of action. J. Biol. Chem. 240, 2749 (1965).PubMedGoogle Scholar
  33. Dewey, O. R., P. Gregory, and R. K. Pfeiffer: Factors affecting the susceptibility of peas to selective dinitro-herbicides. Proc. Brit. Weed Contr. Conf. 1, 313 (1956).Google Scholar
  34. Doll, J. D., D. Penner, and W. F. Meggitt: Herbicide and phosphorus influence on root absorption of amiben and atrazine. Weed Sci. 18, 357 (1970).Google Scholar
  35. Dudek, C., E. Basler, and P. W. Santelmann: Absorption and translocation of terbutryn and propazine. Weed Sci. 21, 440 (1973).Google Scholar
  36. Edwards, S. W., and E. G. Ball: The action of phospholipases on succinate oxidase and cytochrome oxidase. J. Biol. Chem. 209, 619 (1954).PubMedGoogle Scholar
  37. Eletr, S., and A. D. Keith: Spin-label studies of dynamics of lipid alkyl chains in biological membranes: Role of unsaturated sites. Proc. Nat. Acad. Sci. (USA) 69, 1353 (1972).Google Scholar
  38. Farrington, J. A., H. Ebert, E. J. Land, and K. Fletcher: Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta 314, 372 (1973).PubMedGoogle Scholar
  39. Fields, M. L., and D. D. Hemphill: The influence of DMPA on damping-off of peas by Pythium debaryanum ATCC 9998. Weeds 15, 281 (1967).Google Scholar
  40. Fleischer, S., G. Brierley, H. Klouwen, and D. S. Slautterback: Studies of the electron transfer system. IXVII. The role of phospholipids in electron transfer. J. Biol. Chem. 237, 3264 (1962).PubMedGoogle Scholar
  41. Flore, J. A., and M. J. Bukovac: Pesticide effects on the plant cuticle. I. Response of Brassica oleracea L. to EPTC as indexed by epicuticular wax production. J. Amer. Soc. Hort. Sci. 99, 34 (1974).Google Scholar
  42. Foy, C. L., and D. Penner: Effect of inhibitors and herbicides on tricarboxylic acid cycle substrate oxidation by isolated cucumber mitochondria. Weeds 13, 226 (1965).Google Scholar
  43. Fulco, A. J.: The biosynthesis of unsaturated fatty acids by bacilli. II. Temperature-dependent biosynthesis of polyunsaturated fatty acids. J. Biol. Chem. 245, 2985 (1970).PubMedGoogle Scholar
  44. Galliard, T.: Aspects of lipid metabolism in higher plants. II. The identification and quantitative analysis of lipids from the pulp of pre-and post-climacteric apples. Phytochem. 7, 1915 (1968).Google Scholar
  45. Gentner, W. A.: The influence of EPTC on external foliage wax deposition. Weeds 14, 27 (1966).Google Scholar
  46. Gerloff, E. D., T. Richardson, and M. A. Stahmann: Changes in fatty acids of alfalfa roots during cold hardening. Plant Physiol. 41, 1280 (1966).PubMedGoogle Scholar
  47. Geronimo, J., and J. W. Herr: Ultrastructural changes of tobacco chloroplasts induced by pyriclor. Weed Sci. 18, 48 (1970).Google Scholar
  48. Geuns, J. M. C.: Variations in sterol composition in etiolated mung bean seedlings. Phytochem. 12, 103 (1973).Google Scholar
  49. Geuns, J. M. C., and J. C. Vendrig: Hormonal control of sterol biosunthesis in Phaseolus aureus. Phytochem. 13, 191 (1974).Google Scholar
  50. Glaser, M., K. A. Ferguson, and P. R. Vagelos: Manipulation of the phospholipid composition of tissue culture cells. Proc. Nat. Acad. Sci. (USA) 71, 4072 (1974).Google Scholar
  51. Glass, A. D. M.: Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake. Plant Physiol. 51, 1037 (1973).PubMedGoogle Scholar
  52. Glass, A. D. M., and B. A. Bohm: Uptake of simple phenols by barley roots. Planta 100, 93 (1971).Google Scholar
  53. Gracen, V. E., C. O. Grogan, and M. J. Forster: Permeability changes induced by Helminthosporium maydis, race T, toxin. Can. J. Bot. 50, 2167 (1972).Google Scholar
  54. Green, D. E., and A. Tzagoloff: Role of lipids in the structure and function of biological membranes. J. Lipid Research 7, 587 (1966).Google Scholar
  55. Grosbois, M.: Changes in the amount of complex lipids in the seeds and in the pericarp during the development of ivy fruit (Hedera helix). Physiol. Plant. 36, 145 (1976).Google Scholar
  56. Gross, N. J., G. S. Getz, and M. Rabinowitz: Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem. 244, 1552 (1969).PubMedGoogle Scholar
  57. Grunwald, C.: Effect of sterols on the permeability of alcohol-treated red beet tissue. Plant Physiol. 43, 484 (1968).PubMedGoogle Scholar
  58. Grunwald, C.: Sterol distribution in intracellular organelles isolated from tobacco leaves. Plant Physiol. 45, 663 (1970).PubMedGoogle Scholar
  59. Grunwald, C.: Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability. Plant Physiol. 48, 653 (1971).PubMedGoogle Scholar
  60. Grunwald, C.: Sterol molecular modifications influencing membrane permeability. Plant Physiol. 54, 624 (1974).PubMedGoogle Scholar
  61. Grunwald, C.: Plant sterols. Ann. Rev. Plant Physiol. 26, 209 (1975).Google Scholar
  62. Guinn, G.: Changes in sugars, starch, RNA, protein and lipid-soluble phosphate in leaves of cotton plants at low temperatures. Crop Sci. 11, 262 (1971).Google Scholar
  63. Haller, W. T., and D. L. Sutton: Factors affecting the uptake of endothall-C14 by hydrilla. Weed Sci. 21, 446 (1973).Google Scholar
  64. Hammerton, J. L.: Environmental factors and susceptibility to herbicides. Weeds 15, 330 (1967).Google Scholar
  65. Hamill, A. S., and D. Penner: Interaction of alachlor and carbofuran. Weed Sci. 21, 330 (1973a).Google Scholar
  66. Hamill, A. S., and D. Penner: Chlorbromuron-carbofuran interaction in corn and barley. Weed Sci. 21, 335 (1973b).Google Scholar
  67. Hamill, A. S., and D. Penner: Butylate and carbofuran interaction in barley and corn. Weed Sci. 21, 339 (1973c).Google Scholar
  68. Hancock, J. G.: Changes in cell membrane permeability in sunflower hypocotyls infected with Sclerotinia sclerotiorum. Plant Physiol. 49, 358 (1972).PubMedGoogle Scholar
  69. Hardcastle, W. S., R. E. Wilkinson, and C. T. Young: Metribuzin effects on seed constituents of soybean varieties. Weed Sci. 22, 575 (1974).Google Scholar
  70. Harris, N., and A. D. Dodge: The effect of paraquat on flax cotyledon leaves: Physiological and biochemical changes. Planta 104, 210 (1972).Google Scholar
  71. Harris, P., and A. T. James: Effect of low temperature on fatty acid biosynthesis in seeds. Biochim. Biophys. Acta 187, 13 (1969a).PubMedGoogle Scholar
  72. Harris, P., and A. T. James: The effect of low temperatures on fatty acid biosynthesis in plants. Biochem. J. 112, 325 (1969b).PubMedGoogle Scholar
  73. Harvey, R. G., D. J. Hagedorn, and R. L. Deloughery: Influence of herbicides on root rot in processing peas. Crop. Sci. 15, 67 (1975).Google Scholar
  74. Haslam, J. M., T. W. Spithill, and A. W. Linnane: Biogenesis of mitochondria: The effects of altered membrane lipid composition on cation transport by mitochondria of Saccharomyces cerevisiae. Biochem. J. 134, 949 (1973).PubMedGoogle Scholar
  75. Hawke, J. C., M. G. Rumsby, and R. M. Leech: Lipid biosynthesis in green leaves of developing maize. Plant Physiol. 53, 555 (1974).PubMedGoogle Scholar
  76. Hawxby, K., E. Basler, and P. W. Santelmann: Temperature effects on absorption and translocation of trifluralin and methazole in peanuts. Weed Sci. 20, 285 (1972).Google Scholar
  77. Heath, R. L., and L. Packer: Photoperoxidation in isolated chloroplasts. II. Role of electron transfer. Arch. Biochem. Biophys. 125, 850 (1968).PubMedGoogle Scholar
  78. Helgerson, S. L., W. A. Cramer, and D. J. Morre: Evidence for an increase in microviscosity of plasma membranes from soybean hypocotyls induced by the plant hormone, indole-3-acetic acid. Plant Physiol. 58, 548 (1976).PubMedGoogle Scholar
  79. Hilton, J. L., and M. N. Christiansen: Lipid contribution to selective action of trifluralin. Weed Sci. 20, 290 (1972).Google Scholar
  80. Hilton, J. L., J. B. St. john, M. N. Christiansen, and K. H. Norris: Interaction of lipoidal materials and a pyridazinone inhibitor of chloroplast development. Plant Physiol. 48, 171 (1971).PubMedGoogle Scholar
  81. Holton, R. W., H. H. Blecker, and M. Onore: Effect of growth temperature on the fatty acid composition of a blue-green alga. Phytochem. 3, 595 (1964).Google Scholar
  82. Hong-Wei WU, S., and H. M. Mcconnel: Phase separations in phospholipid membranes. Biochem. 14, 847 (1975).Google Scholar
  83. Hubbell, W. L., and H. M. Mcconnell: Molecular motion in spin-labeled phos-pholipids and membranes. J. Amer. Chem. Soc. 93, 314 (1971).Google Scholar
  84. Ingram, D. S., B. A. Knights, I. J. Mcevoy, and P. Mckay: Studies in the Cru-ciferae. Changes in the composition of the sterol fraction following germination. Phytochem. 7, 1241 (1968).Google Scholar
  85. Jacobsohn, G. M., and M. J. Frey: Sterol content and metabolism during early growth of Digitalis purpurea. Arch. Biochem. Biophys. 127, 655 (1968).PubMedGoogle Scholar
  86. Jacobsohn, M. K., and G. M. Jacobsohn: Annual variation in the sterol content of Digitalis purpurea L. seedlings. Plant Physiol. 58, 541 (1976).PubMedGoogle Scholar
  87. Jacobson, K., and D. Papahadjopoulos: Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations. Biochem. 14, 152 (1975).Google Scholar
  88. Jaffe, M. J., and F. M. Isenberg: Some effects of n-dimethyl amino succinamic acid (B-Nine) on the development of various plants, with special reference to the cucumber, Cucumis sativus L. Amer. Soc. Hort. Sci. 87, 420 (1966).Google Scholar
  89. Jain, M. K.: The bimolecular lipid membrane: A system. New York: Van Nostrand Reinhold Co. (1972).Google Scholar
  90. Johnson, B. J., and M. D. Jellum: Effect of pesticides on chemical composition of soybean seed (Glycine max (L.) Merrill). Agron. J. 61, 379 (1969).Google Scholar
  91. Jollow, D., G. M. Keixerman, and A. W. Linnane: The biogenesis of mitochondria. HI. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J. Cell. Biol. 37, 221 (1968).PubMedGoogle Scholar
  92. Juniper, B. E.: The effect of pre-emergent treatment of peas with trichloroacetic acid on the sub-microscopic structure of the leaf surface. New Phytol. 58, 1 (1957).Google Scholar
  93. Kagawa, T., J. M. Lord, and H. Beevers: The origin and turnover of organelle membranes in castor bean endosperm. Plant Physiol. 51, 61 (1973).PubMedGoogle Scholar
  94. Karunen, P., and R. E. Wilkinson: Influence of S-ethyl dipropylthiocarbamate (EPTC) on wheat root phospholipid fatty acid composition. Physiol. Plant. 35, 228 (1975).Google Scholar
  95. Kates, M.: Plant phospholipids and glycolipids. Adv. Lipid Research 8, 225 (1970).Google Scholar
  96. Keeley, P. E., and R. J. Thullen: Cotton response to temperature and organic arsenicals. Weed Sci. 19, 297 (1971).Google Scholar
  97. Kemp, R. J., and E. I. Mercer: Studies on the sterols and sterol esters of the intra-cellular organelles of maize shoots. Biochem. J. 110, 119 (1968).PubMedGoogle Scholar
  98. Kolattukudy, P. E.: Biosynthesis of wax in Brassica oleracea. Biochem. 4, 1844 (1965)Google Scholar
  99. Kolattukudy, P. E., and L. Brown: Inhibition of cuticular lipid biosynthesis in Pisum sativum by thiocarbamates. Plant Physiol. 53, 903 (1974).PubMedGoogle Scholar
  100. Kuiper, P. J. C.: Temperature response of adenosine triphosphatase of bean roots as related to growth temperature and to lipid requirement of the adenosine triphosphatase. Physiol. Plant. 26, 200 (1972).Google Scholar
  101. Kuiper, P. J. C., M. Kahr, C. E. E. Stuiver, and A. Kylin: Lipid composition of whole roots and of Ca2+, Mg2+-activated adenosine triphosphatases from wheat and oat as related to mineral nutrition. Physiol. Plant. 32, 33 (1974).Google Scholar
  102. Ladbrooke, B. D., R. M. Williams, and D. Chapman: Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. Biophys. Acta 150, 333 (1968).PubMedGoogle Scholar
  103. Ladlie, J. S., W. F. Meggitt, and D. Penner: Effect of atrazine on soybean tolerance to metribuzin. Weed Sci. 25, 115 (1977a).Google Scholar
  104. Ladlie, J. S., W. F. Meggitt, and D. Penner: Effect of trifluralin and metribuzin combinations on soybean tolerance to metribuzin. Weed Sci. 25, 88 (1977b).Google Scholar
  105. Lai, M., A. R. Weinhold, and J. G. Hancock: Permeability changes in Phaseolus aureus associated with infection by Rhizoctonia solani. Phytopathol. 58, 240 (1968).Google Scholar
  106. Leese, B. M., and R. M. Leech: Sequential changes in the lipids of developing proplastids isolated from green maize leaves. Plant Physiol. 57, 789 (1976).PubMedGoogle Scholar
  107. Lennarz, W. J.: Lipid metabolism. Ann. Rev. Biochem. 39, 359 (1970).PubMedGoogle Scholar
  108. Lotlikar, P. D., L. F. Remmert, and V. H. Freed: Effects of 2, 4-D and other herbicides on oxidative phosphorylation in mitochondria from cabbage. Weed Sci. 16, 161 (1968).Google Scholar
  109. Lyons, J. M., and C. M. Asmundson: Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling sensitivity in plants. J. Amer. Oil Chem. Soc. 42, 1056 (1965).Google Scholar
  110. Magalhaes, A. C., and F. M. Ashton: Effect of dicamba on oxygen uptake and cell membrane permeability in leaf tissue of Cyperus rotundus L. Weed Research 9, 48 (1969).Google Scholar
  111. Mann, J. D., and M. Pu: Inhibition of lipid synthesis by certain herbicides. Weed Sci. 16, 197 (1968).Google Scholar
  112. Marr, A. G., and J. L. Ingraham: Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 84, 1260 (1962).PubMedGoogle Scholar
  113. Mazliak, P.: Lipid metabolism in plants. Ann. Rev. Plant Physiol. 24, 287 (1973).Google Scholar
  114. Mcelhaney, R. N.: The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B. to grow at various temperatures. J. Mol. Biol. 84, 145 (1974).PubMedGoogle Scholar
  115. Mcwhorter, C. G., and T. N. Jordan: Effects of adjuvants and environment on the toxicity of dalapon to johnsongrass. Weed Sci. 24, 257 (1976).Google Scholar
  116. Melchior, R. L., H. J. Morowitz, J. M. Sturtevant, and T. Y. Tsong: Characterization of the plasma membrane of Mycoplasma laidlawii. VII. Phase transitions of membrane lipids. Biochim. Biophys. Acta 219, 114 (1970).PubMedGoogle Scholar
  117. Meyer, F., and K. Bloch: Effect of temperature on the enzymatic synthesis of un-saturated fatty acids in Torulopsis utilis. Biochim. Biophys. Acta 77, 671 (1963).Google Scholar
  118. Miller, G. M., and J. B. ST. John: Membrane-surfactant interactions in lipid micelles labeled with l-anilino-8-naphthalene-sulfonate. Plant Physiol. 54, 527 (1974).PubMedGoogle Scholar
  119. Miller, R. W., I. De La Roche, and M. K. Pomeroy: Structural and functional responses of wheat mitochondria membranes to growth at low temperatures. Plant Physiol. 53, 426 (1974).PubMedGoogle Scholar
  120. Moreau, F., J. Dupont, and C. Lance: Phospholipid and fatty acid composition of outer and inner membranes of plant mitochondria. Biochim. Biophys. Acta 345, 294 (1974).Google Scholar
  121. Moreland, D. E., W. J. Blackmon, H. G. Todd, and F. S. Farmer: Effects of diphenylether herbicides on reactions of mitochondria and chloroplasts. Weed Sci. 18, 636 (1970).Google Scholar
  122. Morre, D. J.: Membrane biogenesis. Ann. Rev. Plant Physiol. 26, 441 (1975).Google Scholar
  123. Morre, D. J., and C. E. Bracker: Ultrastructural alteration of plant plasma membranes induced by auxin and calcium ions. Plant Physiol. 58, 544 (1976).PubMedGoogle Scholar
  124. Morrod, R. S.: Effects on plant cell membrane structure and function. In L. J. Audus (ed.): Herbicides: Physiology, biochemistry and ecology, Vol. 1, pp. 281–304. New York: Academic Press (1976).Google Scholar
  125. Murata, N., J. H. Troughton, and D. C. Fork: Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans and lettuce and spinach chloroplasts. Plant Physiol. 56, 508 (1975).PubMedGoogle Scholar
  126. Nalewaja, J. D.: Reaction of flax to dicamba applied at several stages. Weed Sci. 17, 385 (1969).Google Scholar
  127. Nalewaja, J. D., J. Pudelko, and K. A. Adamczewski: Influence of climate and additives on bentazon. Weed Sci. 23, 504 (1975).Google Scholar
  128. Nes, W. R.: Role of sterols in membranes. Lipids 9, 596 (1974).PubMedGoogle Scholar
  129. Nozawa, Y., H. Iida, H. Fukushima, K. Ohki, and S. Ohnishi: Studies on Tetra-hymena membranes: Temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spinrlabel study. Biochim. Biophys. Acta 367, 134 (1974).PubMedGoogle Scholar
  130. Omura, T., P. Siekevitz, and G. E. Palade: Turnover of constituents of the endo-plasmic reticulum membranes of rat hepatocytes. J. Biol. Chem. 232, 2389 (1967).Google Scholar
  131. Overath, P., H. U. Schairer, and W. Stoffel: Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry. Biochem. 12, 2625 (1973).Google Scholar
  132. Penner, D.: Effect of temperature on phytotoxicity and root uptake of several herbicides. Weed Sci. 19, 571 (1971).Google Scholar
  133. Penner, D.: Effect of disulfoton, diazinon, and fensulfothon on atrazine absorption by soybean. Agron. J. 66, 107 (1974).Google Scholar
  134. Penner, D., and D. Graves: Temperature influence on herbicide injury to navy beans. Agron. J. 64, 30 (1972).Google Scholar
  135. Penner, D., and W. F. Meggitt: Herbicide effects on soybean (Glycine max (L.) Merrill) seed lipids. Crop Sci. 10, 553 (1970).Google Scholar
  136. Penner, D., and W. F. Meggitt: Herbicide effects on corn lipids. Crop. Sci. 14, 262 (1974).Google Scholar
  137. Peterson, P. A., R. B. Flavell, and D. H. P. Barratt: Altered mitochondrial membrane activities associated with cytoplasmically inherited sensitivity in maize. Theor. Applied Genetics 45, 309 (1975).Google Scholar
  138. Pfeiffer, R. K., O. R. Dewey, and R. T. Brunskill: Further investigation of the effect of pre-emergence treatment with trichloroacetic acid and dichloropropionic acids on the subsequent reaction of plants to other herbicidal sprays. Fourth Internat. Congress Crop Prot. 1, 523 (1957).Google Scholar
  139. Powell, R. A., and R. P. Adams: Seasonal variation in the volatile terpenoids of Juniperus scopulorum (Cupressaceae). Amer. J. Bot. 60, 1041 (1973).Google Scholar
  140. Powell, R. D.: Permeability changes in leaf disks as affected by low temperatures. Plant Physiol. (Suppl.) 44, 16 (1969).Google Scholar
  141. Racker, E., and P. C. Hinkle: Effect of temperature on the function of a proton pump. J. Membrane Biol. 17, 181 (1974).Google Scholar
  142. Raison, J. K., J. M. Lyons, R. J. Mehlhorn, and A. D. Keith: Temperature-induced phase changes in mitochondrial membranes detected by spin labeling. J. Biol. Chem. 246, 4036 (1971).PubMedGoogle Scholar
  143. Richardson, L. T.: Effect of insecticides and herbicides applied to soil on the development of plant diseases. II. Early blight and Fusarium wilt of tomato. Can. J. Plant Sci. 39, 30 (1959).Google Scholar
  144. Robb, R., R. Hammond, and L. Bieber: Temperature-dependent changes in spingo-sine composition and composition of fatty acids of glycerophosphatides from Musca domestica larvae. Insect Biochem. 2, 131 (1972).Google Scholar
  145. Roughan, P. G.: Turnover of the glycerolipids of pumpkin leaves. Biochem. 117, 1 (1970).Google Scholar
  146. Schimke, R. T.: Turnover of membrane proteins in animal cells. Methods Membrane Biol. 3, 210 (1975).Google Scholar
  147. Schroth, M. N., and W. C. Snyder: Effect of host exudates on chlamydospore germination of the bean root rot fungus, Fusarium solani f. phaseoli. Phytopathol. 51, 389 (1961)Google Scholar
  148. Schulz, K. R., T. W. Fuhremann, and E. P. Lichtenstein: Interaction of pesticide chemicals. Effect of Eptam and its antidote on the uptake and metabolism of (14C)phorate in corn plants. J, Agr. Food Chem. 24, 296 (1976).Google Scholar
  149. Seelig, J.: On the flexibility of hydrocarbon chains in lipid bilayers. J. Amer. Chem. Soc. 93, 5017 (1971).Google Scholar
  150. Shewry, P. R., and A. K. Stobart: Effect of gibberellic acid on sterol production in Corylus avellana seeds. Phytochem. 13, 347 (1974).Google Scholar
  151. Shimshick, E. J., and H. M. Mcconnell: Lateral phase separation in phospholipid membranes. Biochem. 12, 2351 (1973).Google Scholar
  152. Shipley, G. G., J. P. Green, and B. W. Nichols: The phase behavior of mono-galactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochim. Biophys. Acta 311, 531 (1973).PubMedGoogle Scholar
  153. Simon, E. W.: Phospholipids and plant membrane permeability. New Phytol. 73, 377 (1974).Google Scholar
  154. Simon, E. W., and H. Beevers: The effect of pH on the biological activities of weak acids and bases. I. The most usual relationship between pH and activity. New Phytol. 51, 163 (1952).Google Scholar
  155. Singh, H., and O. S. Privett: Studies on the glycolipids and phospholipids of immature soybeans. Lipids 5, 692 (1970).PubMedGoogle Scholar
  156. Smith, A. E.: Lipid influence on 2, 4-D transport and accumulation. Weed Sci. 20, 46 (1972).Google Scholar
  157. Smith, A. E., and R. E. Wilkinson: Influence of simazine and atrazine on free fatty acid content in isolated chloroplasts. Weed Sci. 21, 57 (1973).Google Scholar
  158. Still, G. G., D. G. Davis, and G. L. Zander: Plant epicuticular lipids: Alteration by herbicidal carbamates. Plant Physiol. 46, 307 (1970).PubMedGoogle Scholar
  159. ST. John, J. B.: Comparative effects of diuron and chlorpropham on ATP levels in chlorella. Weed Sci. 19, 274 (1971).Google Scholar
  160. ST. John, J. B.: Manipulation of galactolipid fatty acid composition with substituted pyridazi-nones. Plant Physiol. 57, 38 (1976).Google Scholar
  161. ST. John, J. B.: and M. N. Christiansen: Inhibition of linolenic acid synthesis and modification of chilling resistance in cotton seedlings. Plant Physiol. 57, 257 (1976).Google Scholar
  162. ST. John, J. B.: and J. L. Hilton: Lipid metabolism as a site of herbicide action. Weed Sci. 21, 477 (1973).Google Scholar
  163. Switzer, C.M.: Effect of herbicides and related chemicals on oxidation and phos-phorylation by isolated soybean mitochondria. Plant Physiol. 32, 42 (1957).PubMedGoogle Scholar
  164. Thomlinson, H., and S. Rich: Effect of ozone on sterols and sterol derivatives in bean leaves. Phytopathol. 61, 1404 (1971).Google Scholar
  165. Thomlinson, H., and S. Rich: Anti-senescent compounds reduce injury and steroid changes in ozonated leaves and their chloroplasts. Phytopathol. 63, 903 (1973).Google Scholar
  166. Thompson, L., JR., F. W. Slife, and H. S. Butler: Environmental influence on the tolerance of corn to atrazine. Weed Sci. 18, 509 (1970).Google Scholar
  167. Tremolieres, A., and M. Lepage: Changes in lipid composition during greening of etiolated pea seedlings. Plant Physiol. 47, 329 (1971).PubMedGoogle Scholar
  168. Tzagoloff, A., and D. H. Maclennan: Studies of the electron-transfer system. LXIV. Role of phospholipid in cytochrome oxidase. Biochim. Biophys. Acta 99, 476 (1965).PubMedGoogle Scholar
  169. Van Bruggen, J. T.: Chemistry of the membrane. Pages 1-32 In H. D. Brown (ed.): Chemistry of the cell interface. Part A, pp. 1–32. New York: Academic Press (1971).Google Scholar
  170. Van Deenen, L. L. M.: Some structural and dynamic aspects of lipids in biological membranes. Ann. N. Y. Acad. Sci. 137, 717 (1966).PubMedGoogle Scholar
  171. Vanderkooi, G., and D. Green: New insights into biological membrane structure. Bioscience 21, 409 (1971).Google Scholar
  172. Van Rensen, J. J. S.: Lipid peroxidation and chlorophyll destruction caused by diquat during photosynthesis in Scenedesmus. Physiol. Plant. 33, 42 (1975).Google Scholar
  173. Venis, M. A., and G. E. Blackman: The uptake of growth substances. VIII. Accumulation of chlorinated benzoic acids by Avena segments: A possible mechanism for transient phase of accumulation. J. Exp. Bot. 17, 771 (1966).Google Scholar
  174. Vostral, H. J., K. P. Buchholtz, and C. A. Kust: Effect of root temperature on absorption and translocation of atrazine in soybeans. Weed Sci. 18, 115 (1970).Google Scholar
  175. Wax, L. M., L. A. Knuth, and F. W. Slife: Response of soybeans to 2, 4-D, dicamba, and picloram. Weed Sci. 17, 338 (1969).Google Scholar
  176. Wedding, R. T., L. C. Erickson, and M. K. Black: Influence of 2, 4-dichloro-phenoxyacetic acid on solute uptake by Chlorella. Plant Physiol. 34, 3 (1959).PubMedGoogle Scholar
  177. Weierich, A. J., Z. A. Nelson, and A. P. Appleby: Influence of fonofos on the distribution and metabolism of 14C-terbacil in peppermint. Weed Sci. 25, 27 (1977).Google Scholar
  178. Weinberg, M. B., and P. A. Castelfranco: Effect of EPTC on plastid membrane constituents in germinating cucumber cotyledons. Weed Sci. 23, 185 (1975).Google Scholar
  179. White, J. A., and D. D. Hemphill: An ultrastructural study of the effects of 2, 4-D on tobacco leaves. Weed Sci. 20, 478 (1972).Google Scholar
  180. Wilkinson, R. E.: Sicklepod surface wax response to photoperiod and S-(2, 3-dichloroallyl)-diisopropylthiocarbamate (diallate). Plant Physiol. 53, 269 (1974).PubMedGoogle Scholar
  181. Wilkinson, R. E., and W. S. Hardcastle: EPTC effects on sicklepod petiolar fatty acids. Weed Sci. 17, 335 (1969).Google Scholar
  182. Wilkinson, R. E., and W. S. Hardcastle: EPTC effects on total leaflet fatty acids and hydrocarbons. Weed Sci. 18, 125 (1970).Google Scholar
  183. Wilkinson, R. E., and W. S. Hardcastle: Cotton oil quality after post-emergence herbicides in oil. Weed Sci. 20, 241 (1972a).Google Scholar
  184. Wilkinson, R. E., and W. S. Hardcastle: Influence of sequential herbicide applications on cottonseed oil composition. J. Agr. Food Chem. 20, 293 (1972b).Google Scholar
  185. Wilkinson, R. E., and A. E. Smith: Reversal of EPTC induced fatty acid synthesis inhibition. Weed Sci. 23, 90 (1975a).Google Scholar
  186. Wilkinson, R. E., and A. E. Smith: Thiocarbamate inhibition of fatty acid biosynthesis in isolated spinach chloroplasts. Weed Sci. 23, 100 (1975b).Google Scholar
  187. Wilkinson, R. E., and A. E. Smith: EPTC altered beet disc betacyanin efflux and fatty acid synthesis. Weed Sci. 24, 235 (1976).Google Scholar
  188. Willemot, C.: Simultaneous inhibition of linolenic acid synthesis in winter wheat roots and frost hardening by BASF 13-338, a derivative of pyridazinone. Plant Physiol. 60, 1 (1977).PubMedGoogle Scholar
  189. Wilson, H. P., F. B. Stewart, and T. E. Hines: Effect of temperature on response of tomatoes to several dinitroaniline herbicides and phosphorus. Weed Sci. 24, 115 (1976).Google Scholar
  190. Wilson, J. M., and R. M. M. Crawford: The acclimatization of plants to chilling temperatures in relation to the fatty acid composition of leaf polar lipids. New Phytol. 73, 805 (1974).Google Scholar
  191. Wilson, J. M., and R. M. M. Crawford: Leaf fatty-acid content in relation to hardening and chilling injury. J. Exp. Bot. 25, 121 (1974).Google Scholar
  192. Wilson, R. F., and R. W. Rinne: Phospholipids in the developing soybean seed. Plant Physiol. 54, 744 (1974).PubMedGoogle Scholar
  193. Wilson, R. F., and R. W. Rinne: Studies on lipid synthesis and degradation in developing soybean cotyledons. Plant Physiol. 57, 375 (1976).PubMedGoogle Scholar
  194. Wood, A., and L. G. Paleg: The influence of gibberellic acid on the permeability of model membrane systems. Plant Physiol. 50, 103 (1972).PubMedGoogle Scholar
  195. Wood, A., L. G. Paleg, and T. M. Spotswood: Hormone-phospholipid interaction: A possible hormonal mechanism of action in the control of membrane permeability. Australian J. Plant Physiol. 1, 167 (1974).Google Scholar
  196. Wright, M., and E. W. Simon: Chilling injury in cucumber leaves. J. Exp. Bot. 24, 400 (1973).Google Scholar
  197. Wyse, D. L., W. F. Meggitt, and D. Penner: The interaction of atrazine and EPTC on navy bean. Weed Sci. 24, 5 (1976).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • C. M. Rivera
  • Donald Penner
    • 1
  1. 1.Pesticide Research Center, Department of Crop and Soil SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations