Advertisement

References

  • Rütger A. Wever
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)

Keywords

Circadian Rhythm Circadian Clock Central Nervous System Disease Diurnal Rhythm Blind Subject 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey, W. R., Bawin, S. M.: Brain interactions with weak electric and magnetic fields. Neurosci. Res. Progr. Bull 15 /1 (1977).Google Scholar
  2. Andrews, R. V.: Temporal secretory response of cultured hamster adrenals. Comp. Biochem. Physiol. 26, 179–193, 479–488 (1968).PubMedCrossRefGoogle Scholar
  3. Apfelbaum, M., Nillus, P.: Evolution de la conductance physiologique chez les femmes vivant à 11°C pendant quinze jours. Rev. Fr. Etud. Clin. Biol 12, 80–85 (1967).PubMedGoogle Scholar
  4. Apfelbaum, M., Reinberg, A., Nillus, P., Halberg, F.: Rythmes circadiens de l’alternance veille-sommeil pendant l’isolement souterrain de sept jeunes femmes. Presse Méd. 77, 879–882 (1969).PubMedGoogle Scholar
  5. Appel, W.: Uber die Tagesschwankung der Eosinophilen. Z. Gesamte Exp. Med 104, 15–21 (1938).CrossRefGoogle Scholar
  6. Appel, W., Hansen, K. J.: Lichteinwirkung, Tagesrhythmik der eosinophilen Leukozythen und Hy pophy sennebennierenrinden sy stem. Dtsch. Arch. klin. Med 199, 530–537 (1952).PubMedGoogle Scholar
  7. Aschoff, J.: Der Tagesgang der Körpertemperatur beim Menschen. Klin. Wochenschr. 33, 545–551 (1955).CrossRefGoogle Scholar
  8. Aschoff, J.: Gesetzmässigkeiten der biologischen Tagesperiodik. Dtsch. Med. Wochenschr 88, 1930–1937 (1963a).PubMedCrossRefGoogle Scholar
  9. Aschoff, J.: Comparative Physiology: Diurnal Rhythms. Annu. Rev. Physiol. 25, 581–600 (1963b).Google Scholar
  10. Aschoff, J.: Circadian rhythms in man. Science 148, 1427–1432 (1965a).PubMedCrossRefGoogle Scholar
  11. Aschoff, J.: Response curves in circadian periodicity. In: Circadian Clocks. Aschoff J. (ed.) Amsterdam: North-Holland Publ. Comp. 1965b, pp. 95–111.Google Scholar
  12. Aschoff, J.: Physiologie biologischer Rhythmen. Ärztliche Praxis 18, 1569, 1593–1597 (1966).Google Scholar
  13. Aschoff, J.: Human circadian rhythms in activity, body temperature and other function. Life Sci. Space Res. 5, 159 - 173 (1967a).Google Scholar
  14. Aschoff, J.: Adaptive cycles: Their significance for defining environmental hazards. Int. J. Biometeor 11, 255–278 (1967b).CrossRefGoogle Scholar
  15. Aschoff, J.: Circadiane Periodik als Grundlage des Schlaf-Wach-Rhythmus. In: Ermüdung, Schlaf und Traum. Baust, W. (ed.) Stuttgart: Wiss. Verlagsges. 1970, pp. 59–98.Google Scholar
  16. Aschoff, J.: Eigenschaften der menschlichen Tagesperiodik. In: Aktuelle Probleme der Arbeitsumwelt, Rutenfranz, J. (ed.) Stuttgart: A. W. Gentner Verlag 1971.Google Scholar
  17. Aschoff, J.: Das circadiane System. Grundlagen der Tagesperiodik und ihrer Bedeutung für angewandte Physiologie und Klinik. Verh. Dtsch. Ges. Inn. Med 79, 19–31 (1973).PubMedGoogle Scholar
  18. Aschoff, J., Wever, R.: Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften 49, 337–342 (1962a).CrossRefGoogle Scholar
  19. Aschoff, J., Wever, R.: Biologische Rhythmen und Regelung. Bad Oeynhausener Gespräche 5, 1–15 (1962b).Google Scholar
  20. Aschoff, J., Wever, R.: Über Phasenbeziehungen zwischen biologischer Tagesperiodik und Zeitgeberperiodik. Z. Vergl. Physiol 46, 115–128 (1962c).CrossRefGoogle Scholar
  21. Aschoff, J., Wever, R.: Resynchronisation der Tagesperiodik von Vögeln nach Phasensprung des Zeitgebers. Z. Vergl. Physiol 46, 321–335 (1963).CrossRefGoogle Scholar
  22. Aschoff, J., Wever, R.: Circadian period and phase-angle difference in chaffinches (Fringilla coelebs L.). Comp. Biochem. Physiol 18, 397–404 (1966).PubMedCrossRefGoogle Scholar
  23. Aschoff, J., Klotter, K., Wever, R.: Circadian vocabulary. In: Circadian Clocks. Aschoff J. (ed.) Amsterdam: North-Holland Publ. Comp. 1965, pp. 10–19.Google Scholar
  24. Aschoff, J., Gerecke, U., Wever, R.: Phasenbeziehungen zwischen den circadianen Perioden der Aktivität und der Kerntemperatur beim Menschen. Pflügers Arch. 295, 173–183 (1967a).CrossRefGoogle Scholar
  25. Aschoff, J., Gerecke, U., Wever, R.: Desynchronization of human circadian rhythms. Jap. J. Physiol 17, 450–457 (1967b).CrossRefGoogle Scholar
  26. Aschoff, J., v. Saint Paul, U., Wever, R.: Circadiane Periodik von Finkenvögeln unter dem Einfluss eines selbstgewählten Licht-Dunkel-Wechsels. Z. Vergl. Physiol 58, 304–321 (1968).CrossRefGoogle Scholar
  27. Aschoff, J., Poeppel, E., Wever, R.: Circadiane Periodik des Menschen unter dem Einfluss von Licht-Dunkel-Wechseln unterschiedlicher Periode. Pflügers Arch. 306, 58–70 (1969).PubMedCrossRefGoogle Scholar
  28. Aschoff, J., v. Saint Paul, IL, Wever, R.: Die Lebensdauer von Fliegen unter dem Einfluss von Zeit-Verschiebungen. Naturwissenschaften 58, 574 (1971a).PubMedCrossRefGoogle Scholar
  29. Aschoff, J., Fatranska, M., Giedke, H., Doerr, P., Stamm, D., Wisser, H.: Human circadian rhythms in continuous darkness: entrainment by social cues. Science 171, 213–215 (1971b).PubMedCrossRefGoogle Scholar
  30. Aschoff, J., Gerecke, IL, Kureck, A., Pohl, H., Rieger, P., v. Saint Paul, U., Wever, R.: Inter-dependent parameters of circadian activity rhythms in birds and man. In: Biochronometry. Menaker M. (ed.) Washington D.C.: Nat. Acad. Sciences 1971c, pp. 3–27.Google Scholar
  31. Aschoff, J., Giedke, H., Poeppel, E., Wever, R.: The influence of sleep-interruption and of sleep-deprivation on circadian rhythms in human performance. In: Aspects of Human Efficiency. Colquhoun, W. P. (ed.) London: The English Univ. Press Lim. 1972, pp. 135–149Google Scholar
  32. Aschoff, J., Fatranska, M., Gerecke, U., Giedke, H.: Twenty-four-hour rhythms of rectal temperature in humans: effects of sleep-interruptions and of test-sessions. Pflügers Arch. 346, 215–222 (1974a).PubMedCrossRefGoogle Scholar
  33. Aschoff, J., Ceresa, F., Halberg, F. (eds.): Chronobiological aspects of endocrinology. Symposia Medica Hoechst 9. Stuttgart-New York: F. K. Schattauer-Verlag, 1974b.Google Scholar
  34. Aschoff, J., Hoffmann, K., Pohl, H., Wever, R.: Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber. Chronobiologia 2, 23–78 (1975).PubMedGoogle Scholar
  35. Atkinson, M., Kripke, D. F., Wolf, S. R.: Autorhythmometry in manic-depressives. Chronobiologia 2, 325–335 (1975).PubMedGoogle Scholar
  36. Autenrieth, J. H.: Handbuch der empirischen menschlichen Physiologie. Tübingen 1801/02.Google Scholar
  37. Baade, W.: Experimentelle und kritische Beiträge zur Frage nach den sekundären Wirkungen des Unterrichtes insbesondere auf die Empfänglichkeit des Schülers. Paedagog. Monogr. Bd. III, Leipzig 1907.Google Scholar
  38. Batschelet, E.: Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. Washington D.C.: Am. Inst. Biol. Sciences, 1965.Google Scholar
  39. Benedict, F. G.: Studies in body temperature. I. Influence of the inversion of the daily routine; the temperature of night-workers. Am. J. Physiol 11, 145–150 (1904).Google Scholar
  40. Benedict, F. G., Snell, J. F.: Körpertemperatur-Schwankungen mit besonderer Rücksicht auf den Einfluss, welchen die Umkehrung der täglichen Lebensgewohnheiten beim Menschen ausübt. Pflügers Arch. 90, 33–72 (1902).CrossRefGoogle Scholar
  41. Bjerner, B., Swensson, A.: Schichtarbeit und Rhythmus. Acta Med. Scand. [Suppl.] 278, 102–107 (1953).Google Scholar
  42. Blake, M. J. F.: Temperament and Time of day. In: Biological Rhythms and Human Performance. Colquhoun W. P. (ed.) London-New York: Acad. Press, 1971, pp. 109–148.Google Scholar
  43. Bodenheimer, S., Winter, J. S. D., Faiman, C.: Diurnal rhythms of serumgonadotropins, testosterone, estriadol and Cortisol in blind men. J. Clin Endocrinol. Metab 37, 412 (1973).Google Scholar
  44. Brengelmann, J. C., Brengelmann, L.: Deutsche Validierung von Fragebogen der Extraversion, neurotischen Tendenz und Rigidität. Z. Exp. Angew. Psychol 7, 291–331 (1960).Google Scholar
  45. Brinkmann, K.: Temperatureinfluss auf die circa- diane Rhythmic von Euglena gracilis bei Mixotrophie and Autotrophic. Planta Med. 70, 344–389 (1965).Google Scholar
  46. Brinkmann, K.: Metabolie control of temperature compensation in the circadian rhythm of Euglena gracilis. In: Biochronometry. Menaker, M. (ed.) Washington D.C.: Nat. Acad Sciences 1971, pp. 567–593.Google Scholar
  47. Brown, F. A. Jr.: The ‘clock’ timing biological rhythms. Am. Sci 60, 756–766 (1972).PubMedGoogle Scholar
  48. Browne, R. C.: The day and night performance rhythm in industry. 5th Conf. Soc. Biol. Rhythm, Stockholm 1955, pp. 61–64 AcoPrint, Stockholm 1961.Google Scholar
  49. Chouvet, G., Mouret, J., Coindet, J., Siffre, M., Jouvet, M.: Périodicité bicircadienne du cycle veille-sommeil dans des conditions hors du temps. Etude poly graphique. Electroencephalogr. Clin. Neurophysiol 37, 367–380 (1974).CrossRefGoogle Scholar
  50. Clegg, B. R., Schaefer, K. E.: Measurement of periodicity and phase shift of physiological functions in isolation experiments by cross-correlation techniques using synthesized periodicities. Aerosp. Med 37, 271 (1966).Google Scholar
  51. Colin, J., Timbal, J., Boutelier, C., Houdas, Y., Siffre, M.: Rhythm of the rectal temperature during a 6-month free-running experiment. J. Appl. Physiol 25, 170–176 (1968).PubMedGoogle Scholar
  52. Colquhoun, W. P. (ed.): Biological Rhythms and Performance. London-New York: Academic Press 1971.Google Scholar
  53. Colquhoun, W. P. (ed.): Aspects of Human Efficiency. London: The English Univ. Press Lim. 1972.Google Scholar
  54. Colquhoun, W. P., Blake, M. J. F., Edwards, R. S.: Experimental studies of shift-work. I. A comparison of ‘rotating’ and ‘stabilized’ 4- hour shift systems. Ergonomics 11, 437–453 (1968). II. Stabilized 8-hour shift systems. Ergonomics 11, 527–546 (1968). III. Stabilized 12-hour shift systems. Ergonomics 12, 865–882 (1969).CrossRefGoogle Scholar
  55. Conroy, R. T. W. L., Mills, J. N.: Human Circadian Rhythms. London: Churchill, J. & A. 1970.Google Scholar
  56. Curtis, G. C., Fogel, M. L.: Circadian periodicity of plasma Cortisol levels: effect of random living schedule in man. Space Life Sci. 3, 125–134 (1971).PubMedCrossRefGoogle Scholar
  57. Daan, S., Pittendrigh, C. S.: A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J. comp. Physiol 106, 253–266 (1976).CrossRefGoogle Scholar
  58. D’Allesandro, B.: Circadian rhythms of Cortisol secretion in elderly and blind subjects. Br. Med. J 2, 274 (1974).CrossRefGoogle Scholar
  59. Doerrscheidt, G. J., Beck, L.: Advanced method for evaluating characteristic parameters (T, A, p) of circadian rhythms. J. Math. Biology 2, 107–121 (1975).CrossRefGoogle Scholar
  60. Elliott, A. L., Mills, J. N., Waterhouse, J. M.: A man with too long a day. J. Physiol. (Lond.) 272, 30–31 P (1971a).Google Scholar
  61. Elliott, A. L., Mills, J. N., Minors, D. S., Waterhouse, J. M.: Effects of simulated time zone shifts upon plasma corticosteriod rhythms. J. Physiol (Lond) 217, 50–51 P (1971b).Google Scholar
  62. Elliott, A. L., Mills, J. N., Minors, D. S., Waterhouse, J. M.: The effect of real and simulated time zone shifts upon the circadian rhythms of body temperature, plasma 11-hydroxycorti- costeroids, and renal excretion in human subjects. J. Physiol. (Lond) 221, 227–257 (1972).Google Scholar
  63. Engelmann, W.: Lithium slows down the Kalanchoe clock. Z. Naturforschg. 27b, All (1972).Google Scholar
  64. Engelmann, W.: A slowing down of circadian rhythms by Lithium ions. Z. Naturforschg 28c, 733–736 (1973).Google Scholar
  65. Enright, J. T.: The search for rhythmicity in biological time-series. J. Theor. Biol 8, 426–468 (1965).PubMedCrossRefGoogle Scholar
  66. Fahrenberg, J.: Ein item-analysierter Fragebogen funktionell körperlicher Beschwerden (VELA). Diagnostica 11, 141–153 (1965).Google Scholar
  67. Ferin, M., Halberg, F., Richart, R. M., Vande-Wiele, R. L.: Biorhythms and Human Reproduction. New York—London—Sidney—Toronto: J. Wiley & Sons 1974.Google Scholar
  68. Findley, J. D., Migler, B. M., Brady, J. V.: A long-term study of human performance in a continuously programmed experimental environment. Techn. Report ( Univ. of Maryland, Dep. of Psychol. ) 1963.Google Scholar
  69. Fraisse, P., Siffre, M., Oberon, G., Zuili, N.: Le rythme veille-sommeil et l’estimation du temps. In: Cycles Biologiques et Psychiatrie. Ajuriaguerra, J. de (ed.) Paris: Masson & Cie. 1968, pp. 257–265.Google Scholar
  70. Fröberg, J., Karlsson, C. C., Levi, L., Lidberg, L.: Circadian variations in performance, psychological ratings, catecholamine excretion, and diuresis during prolonged sleep deprivation. Int. J. Psychobiol. 2, 23-36 (1972); and In: Aspects of Human Efficiency. Colquhoun, W. P. (ed.) London: The English Univ. Press Lim. 1972, pp. 247 – 253.Google Scholar
  71. Gauquelin, F.: Terrestrial modulations of the daily cycle of birth. J. Interdiscipl. Cycle Res 2, 211–217 (1971).CrossRefGoogle Scholar
  72. Gerritzen, F.: Influence of light on human circa- dian rhythms. Aerosp. Med 37, 66–70 (1966).PubMedGoogle Scholar
  73. Ghata, J., Halberg, F., Reinberg, A., Siffre, M.: Rythmes circadiens désynchronisés du cycle social (17-hydroxycorticosteroides, température rectale, veille-sommeil) chez deux sujets adultes sains. Ann. Endocrinol. (Paris) 30, 245–260 (1969).Google Scholar
  74. Giedke, H., Fatranska, M., Doerr, P., Hansert, E., Stamm, D., Wisser, H.: Tagesperiodik der Rectaltemperatur sowie der Ausscheidung von Elektrolyten, Katecholaminmetaboliten und 17-Hydroxycorticosteroiden mit dem Harn beim Menschen mit und ohne Lichtzeitgeber. Int. Arch. Arbeitsmed 32, 43–66 (1974).PubMedCrossRefGoogle Scholar
  75. Gierse, A.: Quaemiam sit ratio caloris organici. Dissertation Halle 1842.Google Scholar
  76. Goertzen, C.: Synchronisation und Desynchronisation verschiedener psychophysiologischer Variablen. Ber. 30. Kongr. Dtsch. Ges. Psychol., pp. 387–388 (1976).Google Scholar
  77. Guenther, R., Knapp, E., Halberg, F.: Referenz-normen der Rhythmometrie; circadiane Acrophasen von 20 Körperfunktionen. Z. Angew. Bäder-Klimaheilk 16, 123 - 153 (1969).Google Scholar
  78. Gwinner, E.: Entrainment of a circadian rhythm in birds by species-specific song cycles. Experientia 22, 765 (1966).CrossRefGoogle Scholar
  79. Halberg, F.: Physiologic 24-hour periodicity: general and procedural considerations with reference to the adrenal cycle. Z. Vitamin-Hormon-Fermentforsch 10, 225–296 (1965).Google Scholar
  80. Halberg, F.: Chronobiology. Annu. Rev. Physiol 31, 675–725 (1969).PubMedCrossRefGoogle Scholar
  81. Halberg, F., Reinberg, A.: Rythmes circadiens et rythmes de basses fréquences en physiologie humaine. J. Physiol. (Paris) 59, 117–200 (1967).Google Scholar
  82. Halberg, F., Simpson, H.: Circadian acrophases of human 17-hydroxycorticosteroids excretion referred to midsleep rather than midnight. Hum. Biol 39, 405–413 (1967).PubMedGoogle Scholar
  83. Halberg, F., Frank, G., Harner, R., Matheys, J., Aaker, H., Gravem, H., Melby, J.: The adrenal cycle in men on different schedules of motor and mental activity. Experientia 17, 282 (1961).PubMedCrossRefGoogle Scholar
  84. Halberg, F., Siffre, M., Engeli, M., Hillmann, D., Reinberg, A.: Etude en librecours des rythmes circadiens du pouls, de l’alternance veillesommeil et de l’estimation du temps pendant les deux mois de séjour souterrain d’un homme adulte jeune. C. R. Acad. Sci. (Paris) 260, 1259–1262 (1965).Google Scholar
  85. Halberg, F., Reinhardt, J., Bartter, F. C., Delea, C., Gordon, R., Reinberg, A., Ghata, J., Halhuber, M., Hofmann, H., Günther, R., Knapp, E., Pena, J. C., Garcia Sainz, M.: Agreement in endpoints from circadian rhythmometry on healthy human beings living on different continents. Experientia 25, 107–112 (1969).PubMedCrossRefGoogle Scholar
  86. Harth, W.: VLF-Atmospherics—Ihre Messung und ihre Interpretation. Z. Geophysik 38, 815–849 (1972).Google Scholar
  87. Harth, W.: Atmospherics oder Sferics—Die elektromagnetische Impulsstrahlung atmosphärischen Ursprungs. Inn. Med 2, 82–88 (1975).Google Scholar
  88. Hartman, E.: The Biology of Dreaming. Spring-field III.: Charles C. Thomas, 1967. Hastings, J. W.: Unicellular clocks. Annu. Rev. Microbiol 13, 297–312 (1959).Google Scholar
  89. Hastings, J. W., Wilson, T.: Bioluminescence and chemiluminescence Photochem. Photobiol. 23, 461–473 (1976).CrossRefGoogle Scholar
  90. Hildebrandt, G.: Die Bedeutung der Umweltreize für den Tagesrhythmus des Menschen. Z. Angew. Bäder-Klimaheilk 13, 626 - 644 (1966).Google Scholar
  91. Hildebrandt, G. (ed.): Biologische Rhythmen und Arbeit. Wien-New York: Springer-Verlag 1976.Google Scholar
  92. Hildebrandt, G., Lowes, E. M.: Tagesrhythmische Schwankungen der vegetativen Lichtreaktion beim Menschen. J. Interdiscipl. Cycle Res 3, 289–301 (1972).CrossRefGoogle Scholar
  93. Hildebrandt, G., Engel, P., Voigt, E.-D.: Rhythmologische Probleme der Raumfahrt. Bundesminst. Wiss. Forsch., Forschungsber. W 68- 30: 285–303 (1968).Google Scholar
  94. Hoffmann, K.: Zum Einfluss der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik. Z. vergl. Physiol 62, 93–110 (1969).CrossRefGoogle Scholar
  95. Hoffmann. K.: Circadiane Periodik bei Tupajas (Tupaia glis) in konstanten Bedingungen. Zool. Anz. Suppl 33, 171–177 (1970).Google Scholar
  96. Hoffmann, K.: Splitting of the circadian rhythm as a function of light intensity. In: Biochronometry. Menaker, M. (ed.) Washington D.C.: Nat. Acad. Sciences 1971, pp. 134–146.Google Scholar
  97. Holleck, M.: Zur Frage der Persistenz der 24- Stunden-Rhythmik in den Wasser- und Elektrolytausscheidungen des Menschen bei Zeitgeberausschluss. Dissertation Marburg 1972.Google Scholar
  98. Hollwich, F., Dieckhues, B.: Circadian rhythms in blind. J. Interdiscipl. Cycle Res. 2, 291–302 (1971).CrossRefGoogle Scholar
  99. Holst, E. v.: Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergeb. Physiol 42, 228–306 (1939a).Google Scholar
  100. Holst, E. v.: Die Funktionsstruktur des rhyth-misch tätigen Fischrückenmarks. Pfluegers Arch. 241, 569–611 (1939b).CrossRefGoogle Scholar
  101. Høyer, K.: Physiological variations in the iron content of human blood serum. II. Further studies of the intra diem variations. Acta Med. Scand 119, 562–576 (1944).CrossRefGoogle Scholar
  102. Jouvet, M.: Phylogénèse et ontogénèse du sommeil paradoxal: son organisation ultradienne. In: Cycles Biologiques et Psychiatrie. Ajuriaguerra, J. de (ed.) Paris: Masson & Cie. 1968, pp. 185–203.Google Scholar
  103. Jouvet, M., Mouret, J., Chouvet, G., Siffre, M.: Towards a 48-hour Day: Experimental Bicircadian Rhythm in Man. Neurosciences Res. Progr., 3rd Intensive Study Progr. Schmitt, F. O. (ed.) Cambridge: MIT Press 1974, pp. 491–497.Google Scholar
  104. Juergensen, T.: Die Körperwärme des gesunden Menschen. Leipzig 1873.Google Scholar
  105. Kendall, K. G.: Contribution to the Study of Oscillatory Time-Series. London: Cambridge Univ. Press 1946.Google Scholar
  106. Kess, E.: Aktivitätszeit, Zeitschätzung, subjektive Vigilanz und akustische Reaktionszeit bei frei laufender Circadianrhythmik unter Zeitgeberaus schluss. Dissertation, Marburg 1972.Google Scholar
  107. Klein, K. E.: East-west and west to east desynchronization. In: Aerospace Med. Ass. Scientific Meeting, Paneel: The desynchronosis syndrome. Las Vegas, Nevada, U.S.A. May 1973.Google Scholar
  108. Klein, K. E., Wegmann, H.-M.: The resynchronization of human circadian rhythms after transmeridian flights as a result of flight direction and mode of acitivity. In: Chronobiology. Scheving, L. E., Halberg, F., Pauly, J. E. (eds.) Tokyo: Igaku Shoin Ltd., 1974, pp. 564–570.Google Scholar
  109. Klein, K. E., Wegmann, H.-M., Hunt, B. I.: Desynchronization of body temperature and performance circadian rhythms as a result of outgoing and homegoing transmeridian flight. Aerosp Med. 43, 119–132 (1972).PubMedGoogle Scholar
  110. Klotter, K.: General properties of oscillating systems. Cold Spring Harbor Symp. Quant. Biol 25, 185–187 (1960).PubMedGoogle Scholar
  111. König. H.: Atmospherics geringster Frequenzen. Z. Angew. Physik 11, 264–274 (1959).Google Scholar
  112. Kriebel, J.: Die Phasenbeziehungen zwischen den circadianen Periodizitäten von Aktivität, Körpertemperatur und Nebennierenhormonen beim Menschen bei Isolation und bei Synchronisation. Pfluegers Arch. 319, R 123 (1970).Google Scholar
  113. Kriebel, J.: Circadiane Periodik der Nebennie-renmark- und Nebennierenrindenhormone beim Menschen mit und ohne Zeitgeber. Dissertation, München 1971.Google Scholar
  114. Krieger, D. T.: Biorhythms in central nervous system disease (primarily those of pituitary-adrenal hormones). In: Biorhythms and H¬man Reproduction. Ferin, M., Halberg, F., Richart, R. M., VandeWiele, R. L. (eds.) New York—London—Sidney—Toronto: Wiley & Sons 1974, pp. 621–649.Google Scholar
  115. Krieger, D. T., Krieger, H. P.: Circadian variation of the plasma 17-hydroxycorticosteroids in central nervous system disease. J. Clin. Endocrinol. Metab 26, 929–940 (1966).PubMedCrossRefGoogle Scholar
  116. Krieger, D. T., Glick, S.: Absent sleep peaks of growth hormone release in blind subjects: Correlation with sleep EEG stages. J. Clin. Endocrinol. Metabol 33, 847–850 (1971).CrossRefGoogle Scholar
  117. Krieger, D. T., Rizzo, F.: Circadian periodicity of plasma 11-hydroxycorticosteroid levels in subjects with partial and absent light perception. Neuroendocrinology 8, 165–179 (1971).PubMedCrossRefGoogle Scholar
  118. Krieger, D. T., Kreuzer, J., Rizzo, F. A.: Constant light: effects on circadian pattern and phase reversal of steroid and electrolyte levels in man. J. Clin. Endocrinol. Metab 29, 1634–1638 (1969).PubMedCrossRefGoogle Scholar
  119. Krieger, D. T., Allen, W., Rizzo, F., Krieger, H. P.: Characterization of the normal temporal pattern of plasma corticosteroid levels. J. Clin. Endocrinol. Metab 32, 266–284 (1971).PubMedCrossRefGoogle Scholar
  120. Lamprecht, G., Weber, F.: Eine neue Methode zur Bestimmung von Periodenlängen rhyth-misch ablaufender physiologischer Prozesse. Pfluegers Arch. 315, 262–272 (1970).CrossRefGoogle Scholar
  121. Levi, L.: Physical and mental stress reactions during experimental conditions simulating combat. Försvarsmedicin 2, 1–7 (1966).Google Scholar
  122. Lewis, P. R., Lobban, M. C.: Dissociation of diurnal rhythms in human subjects living in abnormal time routines. Q. J. Exp. Physiol 42, 371–386 (1957).Google Scholar
  123. Lobban, M. C.: Dissociation in human rhythmic functions. In: Circadian Clocks. Aschoff, J. (ed.) Amsterdam: North Holland Publ. Comp. 1965a, pp. 219–227.Google Scholar
  124. Lobban, M. C.: Time, light and diurnal rhythms. In: The Physiology of Human Survival. Edholm, O. G., Bacharach, A. L., (eds.) London: Acad. Press Inc. 1965b, pp. 351–386.Google Scholar
  125. Lobban, M. C., Tredre, B.: Renal diurnal rhythms in blind subjects. J. Physiol. (Lond.) 170, 29 P (1964).Google Scholar
  126. Lobban, M. C., Tredre, B. E.: Perception of light and the maintenance of human renal diurnal rhythms. J. Physiol. (Lond.) 189, 32–33 P (1967).Google Scholar
  127. Lohmann. M.: Phase-dependent changes of circadian frequency after light steps. Nature (Lond.) 213, 196–197 (1967).CrossRefGoogle Scholar
  128. Loon, J. H. van: Diurnal body temperature curves in shift workers. Ergonomics 6, 267–273 (1963).CrossRefGoogle Scholar
  129. Lucas, R.: Untersuchungen über den Nachtschlaf des Menschen bei circadian freilaufendem Schlaf-Wachzyklus. Dissertation Marburg 1973.Google Scholar
  130. Lund, R.: Circadiane Periode physiologischer und psychologischer Variablen bei 7 blinden Vpn mit und ohne Zeitgeber. Dissertation München 1974a.Google Scholar
  131. Lund, R.: Personality factors and desynchronization of circadian rhythms. Psychosom. Med 36, 224–228 (1974b).PubMedGoogle Scholar
  132. McCally, M., Wegmann, H.-M., Lund, R., Howard, J.: Effects of simulated time zone shifts on human circadian rhythms. Proc. XXIst Int. Congr. Aviation Space Med., Munich: 260–263 (1973).Google Scholar
  133. McClintock, M. K.: Menstrual synchrony and suppression. Nature (Lond.) 229, 244–245 (1971).CrossRefGoogle Scholar
  134. Meddis, R.: Human circadian rhythms and the.48-hour day. Nature (Lond.) 218, 964–965 (1968).CrossRefGoogle Scholar
  135. Menzel, W.: Menschliche Tag-Nacht-Rhythmik und Schichtarbeit. Basel—Stuttgart: B. Schwabe & Co. 1962.Google Scholar
  136. Migéon, C. J., Tyler, F. H., Mahoney, J. P., Florentin, A. A., Castle, H., Bliss, E. L., Sammeis, L. T.: The diurnal variation of plasma levels and urinary excretion of 17-hydroxycorticosteroids in normal subjects, nightworkers and blind subjects. J. Clin. Endocrinol. Metabol 16, 622–633 (1956).CrossRefGoogle Scholar
  137. Mills, J. N.: Diurnal rhythms during three months underground. J. Physiol. (Lond.) 171, 12 P (1964a).Google Scholar
  138. Mills, J. N.: Circadian rhythms during and after three months in solitude underground. J. Physiol. (Lond) 174, 217–231 (1964b).Google Scholar
  139. Mills, J. N.: Human circadian rhythms. Physiol. Rev. (Wash.) 46, 128–171 (1966).Google Scholar
  140. Mills, J. N.: Sleeping habit during four months in solitude. J. Physiol. (Lond) 189, 30–31 P (1967a).Google Scholar
  141. Mills, J. N.: Keeping in step—away from it all. New Scientist 9, 350–351 (1967b).Google Scholar
  142. Mills, J. N.: Air travel and circadian rhythms. J. R. Coll. Phycus Lond 7, 122–131 (1973).Google Scholar
  143. Mills, J. N., Minors, D. S., Waterhouse, J. M.: Periods of different components of human circadian rhythms in free-running experiments. Int. J. Chronobiol I, 344 (1973).Google Scholar
  144. Mills, J. N., Minors, D. S., Waterhouse, J. M.: The circadian rhythms of human subjects without timepieces or indication of the alternation of day and night. J. Physiol. (Lond.) 240, 567–594 (1974).Google Scholar
  145. Mills, J. N., Minors, D. S., Waterhouse, J. M.: Urinary and temperature rhythms on days of abnormal length. J. Physiol. (Lond) 257, 54–55 P (1976).Google Scholar
  146. Mittelstaedt, H.: Regelung in der Biologie. Regelungstechnik 2, 177 - 181 (1954).Google Scholar
  147. Moore-Ede, M. C.: Circadian rhythms of drug effectiveness and toxicity. Clin. Pharmacol. Ther 14, 925–935 (1973).Google Scholar
  148. Moore-Ede, M. C., Schmelzer, W. S., Kass, D. A., Herd, J. A.: Internal organization of the circadian timing system in multicellular animals. Fed Proc. 35, 2333–2338 (1976).PubMedGoogle Scholar
  149. Nillus, P.: Etude de quelques conséquences biophysiologiques de l’isolement souterrain de sept jeunes femmes bien portantes. Dissertation, Paris 1967.Google Scholar
  150. Njus, D., Sulzman, F. M., Hastings, J. W.: Membrane model for the circadian clock. Nature (Lond.) 248, 116–120 (1974).CrossRefGoogle Scholar
  151. Njus, D., Gooch, Van D., Mergenhagen, D., Sulzman, F., Hastings, J. W.: Membranes and molecules in circadian systems. Fed Proc. 35, 2353–2357 (1976).Google Scholar
  152. Oestberg, O.: Zur Typologie der circadianen Phasenlage: Ansätze zu einer praktischen Chronohygiene. In: Biologische Rhythmen und Arbeit. Hildebrandt, G. (ed.) Wien-New York: Springer-Verlag 1976, pp. 117–137.Google Scholar
  153. Orth, D. N., Island, D. P.: Light synchronization of the circadian rhythm in plasma Cortisol (17- OHCS) concentration in man. J. Clin. Endocrinol. Metabol. 29, 479–486 (1969).CrossRefGoogle Scholar
  154. Orth, D. N., Island, D. P., Liddle, G. W.: Experimental alteration of the circadian rhythm in plasma Cortisol (17-OHCS) concentration in man. J. Clin. Endocrinol. Metabol. 27, 549–555 (1967).CrossRefGoogle Scholar
  155. Papousek, M.: Chronobiologische Aspekte der Zyklothymie. Fortschr. Neurol. Psychiatr. 53, 381–440 (1975).Google Scholar
  156. Pflug, B.: Methodische Probleme der klinischen Rhythmusforschung bei Depressiven. Arzneim. forsch. 26, 1065–1068 (1976).Google Scholar
  157. Pflug, B., Erikson, R., Johnsson, A.: Depression and daily temperature, a long-term study. Acta Psychiatr. Scand. 54, 254–266 (1976).Google Scholar
  158. Pittendrigh, C. S.: Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25, 159–184 (1960).Google Scholar
  159. Pittendrigh, C. S.: Circadian rhythms, space research and manned space flight. Life Sci. Space Res. 5, 122–134 (1967).Google Scholar
  160. Pittendrigh, C. S.: Circadian oscillations in cells and the circadian organization of multicellular systems. In: The Neurosciences: Third study progr., Schmitt, F. O., Worden, F. G. (eds.). Cambridge, Mass.: MIT Press 1974, pp. 437–458.Google Scholar
  161. Pittendrigh, C. S., Daan, S.: Circadian oscillations in rodents: a systematic increase of their frequency with age. Science 186, 548–550 (1974).PubMedCrossRefGoogle Scholar
  162. Pittendrigh, C. S., Daan, S.: A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. J. comp. Physiol 106, 291–331 (1976a).CrossRefGoogle Scholar
  163. Pittendrigh, C. S., Daan, S.: A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons. J. comp. Physiol 106, 333–355 (1976b).CrossRefGoogle Scholar
  164. Pittendrigh, C. S., Minis, D. H.: Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A 69, 1537–1539 (1972).PubMedCrossRefGoogle Scholar
  165. Poeppel, E.: De synchronisation circadianer Rhythmen innerhalb einer isolierten Gruppe. Pfluegers Arch. 299, 364–370 (1968).CrossRefGoogle Scholar
  166. Prout, W.: Observations on the quantity of carbonic acid gas emitted from lungs during respiration, at different times and during different circumstances. Thomsons Ann. Phil 2, 328 (1813).Google Scholar
  167. Radnot, M., Wallner, E., Hönig, M.: Die Wirkung des Lichtes und des Hydergins auf die eosinophilen Leukozyten des Blutes. Wien. Klin. Wochenschr 72, 101–105 (1960).PubMedGoogle Scholar
  168. Reil, C.: Über die Ausdünstung und die Wärmeentwicklung zur Tages- und Nachtzeit. Wäge- und Thermometerversuche. Dtsch. Arch. Physiol 7, 359 (1822).Google Scholar
  169. Reinberg, A.: Hours of changing responsiveness in relation to allergy and the circadian adrenal cycle. In: Circadian Clocks. Aschoff J. (ed.) Amsterdam: North-Holland Publ. Comp. 1965, pp. 214–218.Google Scholar
  170. Reinberg, A.: The hours of changing responsiveness or susceptibility. Perspect. Biol. Med 11, 111–128 (1967).Google Scholar
  171. Reinberg, A.: Chronopharmacology in man. In: Chrono biological Aspects of Endocrinology. Aschoff, J., Ceresa, F., Halberg, F. (eds.) Symp. Med. Hoechst 9, 305–337. Stuttgart-New York: Schattauer-Verlag (1974).Google Scholar
  172. Reinberg, A.: Advances in human chronopharmacology. Chronobiologia 3, 151–166 (1976).PubMedGoogle Scholar
  173. Reinberg, A., Halberg, F.: Circadian chronopharmacology. Annu. Rev. Pharmacol 11, 455–492 (1971).PubMedCrossRefGoogle Scholar
  174. Reinberg, A., Halberg, F., Ghata, J., Siffre, M.: Spectre thermique (rhythme de la température rectale) d’une femme adulte avant, pendant et après son isolement souterain de trois mois. C. R. Acad. Sci. (Paris) 262, 782–785 (1966).Google Scholar
  175. Reinberg, A., Zagula-Mally, Z. W., Ghata, J., Halberg, F.: Circadian rhythms in duration of salicylate excretion referred to phase of excretory rhythms and routine. Proc. Soc. Exp. Biol. Med 124, 826–832 (1967).PubMedGoogle Scholar
  176. Remler, O.: Untersuchungen an Blinden über die 24-Std-Rhythmik. Klin. Monatsbl. Augenheilkd 113, 116–140 (1948).Google Scholar
  177. Richter, C. P.: Biological Clocks in Medicine and Psychiatry. Springfield 111: Thomas Ch. C. Publ. 1965.Google Scholar
  178. Ringer, C.: Circadiane Periodik psychologischer und physiologischer Parameter bei Schlafentzug, Dissertation, München 1972.Google Scholar
  179. Rintoul, D.: Enzyme oscillations in cultured rat liver cells. Physiol, and Biochem. Aspects of Circadian Rhythms. 59th Ann. meet. Fed. Amer. Soc. Exp. Biol. 1975.Google Scholar
  180. Rohles, F. H. Jr., Osbaldiston, G.: Social entrainment of biorhythms in rhesus monkey. In: Circadian Rhythms in Nonhuman Primates. Rohles, F. H. (ed.) Bibl. Primatol. 9, 39–51. Basel-New York: S. Karger 1969.Google Scholar
  181. Rutenfranz, J.: Arbeitsphysiologische Aspekte der Nacht- und Schichtarbeit. Arbeitsmed. Sozialmed. Arbeitshyg 2, 17–23 (1967).Google Scholar
  182. Rutenfranz. J., Hellbruegge, T.: Über Tagesschwankungen der Rechengeschwindig¬keit bei 11-jährigen Kindern. Z. Kinderheilkd 80, 65–82 (1957).PubMedCrossRefGoogle Scholar
  183. Rutenfranz, J., Aschoff, J., Mann, H.: The effects of a cumulative sleep deficit, duration of preceding sleep period and body temperature on multiple choice reaction time. In: Aspects of Human Efficiency. Colquhoun W. P. (ed.) London: The English Univ. Press Lim. 1972, pp. 217–229.Google Scholar
  184. Schaefer, K. E., Clegg, B. R., Carey, C. R., Dougherty, J. H., Weybrew, B. B.: Effects of isolation in a constant environment on periodicity of physiological functions and performance levels. Aerosp. Med 38, 1002–1018 (1967).PubMedGoogle Scholar
  185. Scheving, L. E., Halberg, F., Pauly, J. E. (eds.): Chronobiology. Tokyo: Igaku Shoin Ltd. 1974.Google Scholar
  186. Schmidt, T. H.: Thermoregulatorische Grössen in Abhängigkeit von Tageszeit und Menstrualzyklus. Dissertation, München 1972.Google Scholar
  187. Schulz, H., Dirlich, G., Zulley, J.: Phase shift in the REM sleep rhythm. Pfluegers Arch. 358, 203–212 (1975).CrossRefGoogle Scholar
  188. Schulz, H., Dirlich, G., Zulley, J.: Untersuchungen zur Stabilität ultradianer Rhythmen beim Menschen. Arzneim. forsch 26, 1055–1058 (1976).Google Scholar
  189. Schumann, W. O.: Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z. Naturforsch. [A] 7, 149–154 (1954).Google Scholar
  190. Schuster, A.: On the investigation of hidden periodicities with application to a supposed 26-day period of meteorological phenomena. Terrest. Magnetism 3, 13–41 (1898).CrossRefGoogle Scholar
  191. Sharp, G. W. G.: The effect of light on diurnal leucocyte variations. J. Endocrinol 21, 213–218 (1960a).CrossRefGoogle Scholar
  192. Sharp, G. W. G.: The effect of light on the morning increase in urine flow. J. Endocrinol 21, 219–223 (1960b).CrossRefGoogle Scholar
  193. Shiotsuka, R., Jovonovich, J., Jovonovich, J. A.: In vitro data on drug sensitivity: circadian and ultradian corticosteron rhythms in adrenal organ cultures. In: Chronobiological Aspects of Endocrinology. Aschoff, J., Ceresa, F., Halberg, F., (eds.) Symp. Med. Hoechst 9: 255–267. Stuttgart-New York: Schattauer-Verlag 1974.Google Scholar
  194. Sieber, W.: Synchronisierte und autonome circadiane Periodik physiologischer Funktionen bei Blinden unter besonderer Berücksichtigung des freien Urin-Cortisols. Dissertation, München 1976.Google Scholar
  195. Siffre, M.: Hors du Temps. Tuillard, Paris 1963.Google Scholar
  196. Siffre, M.: Expériences Hors du Temps. Fayard, Paris 1972.Google Scholar
  197. Siffre, M.: Six months alone in a cave. Nat. Geographies 147, 426–435 (1975).Google Scholar
  198. Siffre, M., Reinberg, A., Halberg, F., Ghata, J., Perdriel, G., Slind, R.: L’isolement souterain prolongé. Etude de deux sujet adultes sains avant, pendant et après cet isolement. Presse Méd. 74, 915–919 (1966).PubMedGoogle Scholar
  199. Simpson, H. W., Lobban, M. C.: Effect of a 21- hour day on the human circadian excretory rhythms of 17-hydroxycorticosteroids and electrolytes. Aerosp. Med 38, 1205–1213 (1967).PubMedGoogle Scholar
  200. Simpson, H. W., Lobban, M. C., Halberg, F.: Arctic chronobiology. Urinary near-24-hour rhythms in subjects living on a 21-hour routine in the arctic. Arctic anthropology 7, 144–164 (1970).Google Scholar
  201. Stroebel, C. F.: Biologic rhythms correlates of disturbed behavior in the Rhesus monkey. In: Circadian Rhythms in Nonhuman Pri-mates. Rohles, F. H. (ed.) Bibl. Primatol. 9: 91–105. Basel-New York: S. Karger 1969.Google Scholar
  202. Szafarczyk, A., Nouguier-Soule, J., Assenmacher, I.: Diurnal locomotor and plasma corticosterone rhythms in rats living on photoperiodically lengthened days, Int. J. Chronobiology 2, 373–382 (1974).Google Scholar
  203. Takebe, K., Setaishi, C., Hirami, H., Yamamoto, M., Horiuchi, Y.: Effects of a bacterial pyrogen on the pituitary-adrenal axis at various times in the 24 hours. J. Clin. Endocrinol. Metabol 26, 437–442 (1966).CrossRefGoogle Scholar
  204. Tharp, G. D., Folk, G. E. Jr.: Rhythmic changes in rate of the mammalian heart and heart cells during prolonged isolation. Comp. Biochem. Physiol 14, 255–273 (1965).PubMedCrossRefGoogle Scholar
  205. Toulouse, E., Pieron, H.: Le mechanisme de l’inversion chez l’homme du rythme nyethéméral de la température. J. Physiol. Pathol. Gén 9, 425–440 (1907).Google Scholar
  206. Webb, W. B., Agnew, H. W. Jr.: Sleep and waking in a time-free environment. Aerosp. Med 45, 617–622 (1974a).Google Scholar
  207. Webb, W. B., Agnew, H. W. Jr.: Regularity in the control of the free-running sleep-wakeful- ness rhythm. Aerosp Med. 45, 701–704 (1974b).PubMedGoogle Scholar
  208. Webb, W. B., Agnew, H. W. Jr.: Sleep efficiency for sleep-wake cycles of varied length. Psychophysiology 12, 637–641 (1975).PubMedCrossRefGoogle Scholar
  209. Weitzman, E. D.: Temporal patterns of neuro-endocrine secretion in man: relationship to the 24-hour sleep-waking cycle. In: Chronobiological Aspects of Endocrinology. Aschoff, J., Ceresa, F., Halberg, F. (eds.) Symp. Med. Hoechst 9: 169–184. Stuttgart: Schattauer-Verlag 1974.Google Scholar
  210. Wever, R.: Possibilities of phase-control, demonstrated by an electronic model. Cold Spring Harbor Symp. Quant. Biol 25, 197–201 (1960).Google Scholar
  211. Wever, R.: Zum Mechanismus der biologischen 24-Stunden-Periodik. Kybernetik 1, 139–154 (1962).PubMedCrossRefGoogle Scholar
  212. Wever, R.: Zum Mechanismus der biologischen 24-Stunden-Periodik. II. Mitteilung. Der Ein- fluss des Gleichwertes auf die Eigenschaften selbsterregter Schwingungen. Kybernetik 1: 213–231 (1963a).PubMedGoogle Scholar
  213. Wever, R.: Zum Problem der Regelung in der Biologie. Pfluegers Arch. 278, 89–90 (1963b).Google Scholar
  214. Wever, R.: Ein mathematisches Modell für biologische Schwingungen. Z. Tierpsychol 21, 359–372 (1964a).CrossRefGoogle Scholar
  215. Wever, R.: Zum Mechanismus der biologischen 24-Stunden-Periodik. III. Mitteilung. Anwendung der Modell-Gleichung. Kybernetik 2, 127–144 (1964b).PubMedCrossRefGoogle Scholar
  216. Wever, R.: A mathematical model for circadian rhythms. In: Circadian Clocks. Aschoff, J. (ed.) Amsterdam: North-Holland Publ. Comp. 1965a, pp. 47–63.Google Scholar
  217. Wever, R.: Einzel-Organismen und Populationen im circadianen Experiment. Z. Vergl. Physiol 51, 1–24 (1965b).CrossRefGoogle Scholar
  218. Wever, R.: The duration of re-entrainment of circadian rhythms after phase shifts of the Zeitgeber. A theoretical investigation. J. Theor. Biol 13, 187–201 (1966a).CrossRefGoogle Scholar
  219. Wever, R.: Ein mathematisches Modell für die circadiane Periodik. Z. Angew. Math. Mech. 46, T 148–157 (1966b).Google Scholar
  220. Wever, R.: Gesetzmässigkeiten circadianer Aktivitäts-Rhythmen bei Tier und Mensch. In: La Distribution Temporelle des Activités Animales et Humaines. Médioni, J. (ed.) Paris: Masson & Cie. 1967a, pp. 3–17.Google Scholar
  221. Wever, R.: Zum Einfluss der Dämmerung auf die circadiane Periodik. Z. Vergl. Physiol 55, 255–277 (1967b).Google Scholar
  222. Wever, R.: Über die Beeinflussung der circadianen Periodik des Menschen durch schwache elektromagnetische Felder. Z. Vergl. Physiol 56, 111–128 (1967c).Google Scholar
  223. Wever, R.: Einfluss schwacher elektromagnetischer Felder auf die circadiane Periodik des Menschen. Naturwissenschaften 55, 29–32 (1968a).PubMedCrossRefGoogle Scholar
  224. Wever, R.: Mathematical models of circadian rhythms and their applicability to men. In: Cycles Biologiques et Psychiatrie. Ajuriaguerra, J. de, (ed.) Paris: Masson & Cie. 1968b, pp. 61–72.Google Scholar
  225. Wever, R.: Gesetzmässigkeiten der circadianen Periodik des Menschen, geprüft an der Wirkung eines schwachen elektrischen Wechselfeldes. Pfluegers Arch. 302, 97–112 (1968c).CrossRefGoogle Scholar
  226. Wever, R.: Das Problem des Alterns unter den Bedingungen des Weltraumfluges. Bundesminst. Wiss. Forsch., Forschungsber. W 68–30, 328–331 (1968d).Google Scholar
  227. Wever, R.: Autonome circadiane Periodik des Menschen unter dem Einfluss verschiedener Beleuchtungs-Bedingungen. Pfluegers Arch. 306, 71–91 (1969a).CrossRefGoogle Scholar
  228. Wever, R.: Untersuchungen zur circadianen Periodik des Menschen mit besonderer Berücksichtigung des Einflusses schwacher elek¬trischer Wechselfelder. Bundesminst. Wiss. Forsch., Forschungsber. W 69–31, 1969b.Google Scholar
  229. Wever, R.: The effects of electric fields on circadian rhythms in men. Life Sci. Space Res 8, 177–187 (1970a).PubMedGoogle Scholar
  230. Wever, R.: Die gegenseitige Kopplung zwischen den circadianen Periodizitäten verschiedener vegetativer Funktionen beim Menschen. Pfluegers Arch. 319, R 122 (1970b).Google Scholar
  231. Wever, R.: Zur Zeitgeber-Stärke eines Licht- Dunkel-Wechsels für die circadiane Periodik des Menschen. Pfluegers Arch. 321, 133–142 (1970c).CrossRefGoogle Scholar
  232. Wever, R.: Circadian rhythms of some psycho-logical functions under different conditions. AGARD Conf. Proc. 74, 1/1–1/8 (1970d).Google Scholar
  233. Wever, R.: Die circadiane Periodik des Menschen als Indikator für die biologische Wirkung elektromagnetischer Felder. Z. Physik. Med 2, 439–471 (1971a).Google Scholar
  234. Wever, R.: Influence of electric fields on some parameters of circadian rhythms in man. In: Biochronometry. Menaker, M. (ed.) Washington D.C.: Nat. Acad. Scienc. 1971b, pp. 117–132.Google Scholar
  235. Wever, R.: Virtual synchronization towards the limits of the range of entrainment. J. Theor. Biol 36, 119–132 (1972a).PubMedCrossRefGoogle Scholar
  236. Wever, R.: Mutual relations between different physiological functions in circadian rhythms in man. J. Interdiscipl. Cycle Res 3, 253–265 (1972b).CrossRefGoogle Scholar
  237. Wever, R.: Circadian Rhythms in human performance. In: Proc. NATO-Symp. on Drugs, Sleep, and Performance, pp. 11/1–11/12 (1972c).Google Scholar
  238. Wever, R.: Hat der Mensch nur eine “innere Uhr”? Umschau in Wissensch. Technik 73, 551–558 (1973a).Google Scholar
  239. Wever, R.: Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int. J. Biometeorol 17, 227–232 (1973b).PubMedCrossRefGoogle Scholar
  240. Wever, R.: Die biologische Tagesperiodik und ihre Besonderheiten beim Menschen. Ber. Physik.-Med. Ges. Würzburg 81, 13–30 (1973c).Google Scholar
  241. Wever, R.: Internal phase-angle differences in human circadian rhythms: causes for changes and problems of determinations. Int. J. Chronobiol 1, 371–390 (1973d).PubMedGoogle Scholar
  242. Wever, R.: Der Einfluss des Lichtes auf die circadiane Periodik des Menschen. I. Einfluss auf die autonome Periodik. Z. Physik. Med 3, 121–134 (1973e).Google Scholar
  243. Wever, R.: Different aspects of the studies of human circadian rhythms under the influence of weak electric fields. In: Chronobiology. Scheving, L. E., Halberg, F., Pauly, J. E. (eds.) Tokyo: Igaku Shoin Ltd. 1974a, pp. 694–699.Google Scholar
  244. Wever, R.: The influence of self-controlled changes in ambient temperature on autonomous circadian rhythms in man. Pfluegers Arch. 352, 257–266 (1974b).CrossRefGoogle Scholar
  245. Wever, R.: Der Einfluss des Lichtes auf die circadiane Periodik des Menschen. II. Zeitgeber-Einfluss. Z. Physik. Med 3, 137–150 (1974c).Google Scholar
  246. Wever, R.: ELF-effects on human circadian rhythms. In: ELF and VLF Electromagnetic Field Effects. Persinger, M.A. (ed.) New York-London: Plenum Press 1974d, pp. 101–144.Google Scholar
  247. Wever, R.: Influence of light on human circadian rhythms. Nordic Council Arct. Med. Res. Rep 10, 33–47 (1974e).Google Scholar
  248. Wever, R.: The circadian multi-oscillator system of man. Int. J. Chronobiol 3, 19–55 (1975a).PubMedGoogle Scholar
  249. Wever, R.: Autonomous circadian rhythms in man: singly versus collectively isolated subjects. Naturwissenschaften 62, 443–444 (1975b).PubMedCrossRefGoogle Scholar
  250. Wever, R.: The direction asymmetry in the duration of re synchronization of human circadian rhythms after phase shifts of the Zeitgeber. Pfluegers Arch. 359, R 143 (1975c).Google Scholar
  251. Wever, R.: Die Bedeutung der circadianen Periodik für den alternden Menschen. Verh. Dtsch. Ges. Pathol 59, 160–180 (1975d).PubMedGoogle Scholar
  252. Wever, R.: Quantitative studies of the interaction between different circadian oscillators within the human multi-oscillator system. Chronobiologia 2, Suppl. 1, 77 (1975e).Google Scholar
  253. Wever, R.: Probleme der circadianen Periodik und ihrer Störungen. Arzneim. forsch 26, 1050–1054 (1976a).Google Scholar
  254. Wever, R.: Effects of weak 10 Hz fields on separated vegetative rhythms involved in the human circadian multi-oscillator system. Arch. Met. Geoph. Biokl. Ser.B, 24, 123–124 (1976b).Google Scholar
  255. Wever, R., Zink, R. A.: Fortlaufende Registrierung der Rectaltemperatur des Menschen unter extremen Bedingungen. Pfluegers Arch. 327, 186–190 (1971).CrossRefGoogle Scholar
  256. Whittaker, E., Robinson, G.: The Calculus of Observations. London: Blackie & Son 1924.Google Scholar
  257. Wigand, R.: Der Tod des Menschen an inneren Krankheiten in seiner Beziehung zu den Tages- und Jahreszeiten. Dtsch. Med. Wochenschr 1934, 1709–1711 (1934).CrossRefGoogle Scholar
  258. Winfree, A. T.: Integrated view of resetting a circadian clock. J. Theoret. Biol 28, 327–374 (1970).CrossRefGoogle Scholar
  259. Winget, C. M.: Circadian rhythms in human subjects. Chronobiologia 2, Suppl. 1, 78 (1975).Google Scholar
  260. Wisser, H., Doerr, P., Stamm, D., Fatranska, M., Giedke, H., Wever, R.: Tagesperiodik der Aussecheidung von Electrolyten, Katecholaminmetaboliten und 17-Hydroxycorticosteroiden im Harn. Klin. Wochenschr. 57, 242–246 (1973).CrossRefGoogle Scholar
  261. Wurtman, R. J.: The effect of light on the human body. Sci. Am 23311, 69–77 (1975).Google Scholar
  262. Zulley, J.: Schlaf und Temperatur unter freilaufenden Bedingungen. Ber. 30. Kongr. Dtsch. Ges. Psychol., pp. 398–399 (1976).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1979

Authors and Affiliations

  • Rütger A. Wever
    • 1
  1. 1.Max-Planck-Institut für VerhaltensphysiologieAndechsWest Germany

Personalised recommendations