Regulation of Membrane Fluidity During Temperature Acclimation by TetrahymenaPyriformis

  • Guy A. ThompsonJr.
Part of the Experimental Biology and Medicine book series (EBAM, volume 1)


Nature seems to have chosen a variety of strategies for dealing with environmentally-induced perturbations of membrane fluidity. In recent years a number of investigators have examined the ability of the ciliated protozoan Tetrahymena pyriformis to offset the effects of extreme temperatures on membranes by altering its lipid composition. I should like to describe some of these observations, principally the ones made in my laboratory and the laboratory of Nozawa, which led us to believe that Tetrahymena, and perhaps many other organisms, respond to low temperature-induced suboptimal membrane fluidity by the same molecular sensing mechanism that they utilize for counteracting a variety of quite different fluidity-perturbing stimuli.


Membrane Fluidity Phospholipid Fatty Acid Desaturase Activity Temperature Acclimation Microsomal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fukushima, H., C. E. Martin, H. Iida, Y. Kitajima, G. A. Thompson, Jr. and Y. Nozawa (1976). Biochim. Biophys. Acta 431, 165.PubMedGoogle Scholar
  2. Fukushima, H., S. Nagao, and Y. Nozawa (1979). Biochim. Biophys. Acta 572, 178.PubMedGoogle Scholar
  3. Harris, P., and A. T. James (1969). Biochem. J. 112, 325.PubMedGoogle Scholar
  4. Kimelberg, H. K. (1977) In G. Poste and G. L. Nicholson (eds.) Cell Surface Reviews, vol. 3, 205.Google Scholar
  5. Martin, C. E., and G. A. Thompson, Jr. (1978). Biochemistry 17, 3581.PubMedCrossRefGoogle Scholar
  6. Martin, C. E., K. Hiramitsu, Y. Kitajima, Y. Nozawa, L. Skriver, and G. A. Thompson, Jr. (1976). Biochemistry 15, 5218.PubMedCrossRefGoogle Scholar
  7. Nozawa, Y. (1979). following article, this volume.Google Scholar
  8. Nozawa, Y., and G. A. Thompson, Jr. (1971). J. Cell Biol. 49, 712.PubMedCrossRefGoogle Scholar
  9. Prasad, M. R., and V. C. Joshi (1979). J. Biol. Chem. 254, 997.Google Scholar
  10. Riordan, J. R. Article in this volume.Google Scholar
  11. Skriver, L., and G. A. Thompson, Jr. (1976). Biochim. Biophys. Acta 431, 180.Google Scholar
  12. Skriver, L., and G. A. Thompson, Jr. (1979). Biochim. Bio. Acta 572, 376.Google Scholar
  13. Smith, I. C. P. (197y) Abstracts of Xlth Int. Congress of Biochem., 325.Google Scholar
  14. Thompson, G. A. Jr., R. J. Bambery, and Y. Nozawa (1971). Biochemistry 10, 4441.PubMedCrossRefGoogle Scholar
  15. Wunderlich, F.,A. Ronai, V. Speth, J. Seelig, and A. Blume Biochemistry 14, 3730.Google Scholar
  16. Wunderlich, F., W. Kreutz, P. Mahler, A. Ronai, and G. Heppeler (1978). Biochemistry 17, 2005.PubMedCrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1980

Authors and Affiliations

  • Guy A. ThompsonJr.
    • 1
  1. 1.Department of BotanyThe University of TexasAustinUSA

Personalised recommendations