Docosahexaenoyl Chains are Introduced in Phosphatidic Acid During De Novo Synthesis in Retinal Microsomes

  • Nicolas G. Bazan
  • Norma M. Giusto
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 1)

Abstract

Phosphatidic acid from microsomal membranes of bovine retina contains 21% of docosahexaenoate. If entire retinas are incubated during short-periods of time with dl-propranolol about a fourfold increase takes place in the content of microsomal phosphatidic acid. Moreover docosahexaenoate as well as other acyl chains are increased. It is suggested that a significative proportion of docosahexaenoyl groups of other phospholipids is introduced into the glycerolipids during the de novo biosynthesis of phospatidic acid in the endoplasmic reticulum. Diacylglycerol of the toad retina is highly enriched in docosahexaenoate and has been implicated to have a biosynthetic origin, Howeverm bovine retina diacylglycerols contain relatively low proportions of this fatty acid. This may indicate either that there is a mixture of several diacylglycerols with different fatty acid profiles or that the docosahexaenoate enriched phospatidic acid is metabolized without conversion into diacylglycerols. The alternative pathway investigated at present is docosahexaenoate containing phsophatidylserine synthesis from phosphatidic acid without involving base exchange reaction. When using 2-3H-glycerol as a marker of the de novo synthesis we obtained evidence of a rapid phosphatidic acid formation. A route introducing docosahexaenoate during phosphatidic acid synthesis may actively participate in controlling membrane function by changing membrane fluidity.

Keywords

Retina Propranolol Triacylglycerol Phosphatidylcholine Palmitate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABDEL-LATIF, A.A. (1976) In G. Porcellati, L. Amaducci and C. Galli (Eds.) Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems. Plenum Publishing Corp. New York. 227 pp.Google Scholar
  2. AKESSON, B. (1970) Biochim. Biophys. Acta, 218, 57.PubMedGoogle Scholar
  3. AKESSON, B., J. ELOVSON and G. ARVIDSON (1970) Biochim. Biophys. Acta, 210, 15.PubMedGoogle Scholar
  4. AMES, A., and B.A. HASTINGS (1956) J. Neurophysiol., 19, 201.PubMedGoogle Scholar
  5. AVELDAÑO, M.I,, and N.G. BAZAN (1972) Biochem. Biophys. Res. Commun., 48, 689.PubMedCrossRefGoogle Scholar
  6. AVELDAÑO, M.I,, and N.G. BAZAN (1973) Biochim. Biophys. Acta, 296, 1.Google Scholar
  7. AVELDAÑO, M.I,, and N.G. BAZAN (1974) J. Neurochem., 23, 1127.PubMedCrossRefGoogle Scholar
  8. AVELDAÑO, M.L, and N.G. BAZAN (1974) Febs Letters, 40, 53.PubMedCrossRefGoogle Scholar
  9. AVELDANO de CALDIRONI, M.L, and N.G. BAZAN (1977) In N.G. Bazan, R.R. Brenner and N.M. Giusto (Eds.) Function and Biosynthesis of Lipids. Plenum Publishing Corp. New York. 397 pp.Google Scholar
  10. BAKER, R.R.-, and W. THOMPSON (1972) Biochim. Biophys. Acta, 270, 489.PubMedGoogle Scholar
  11. BAZAN, N.G. (1970) Biochim. Biophys. Acta, 218, 1.PubMedGoogle Scholar
  12. BAZAN, N.G., and H.E.P. BAZAN (1975) In N. Marks and R. Rodnight (Eds.) Research Methods in Neurochemistry. Plenum Publishing Corp. New York. 309 pp.Google Scholar
  13. BAZAN, H.E.P., and N.G. BAZAN (1976) J. Neurochemistry, 27, 1051.CrossRefGoogle Scholar
  14. BAZAN, N.G., M.I. AVELDANO, H.E.P. BAZAN and N.M. GIUSTO (1976) In R. Paoletti, G. Porcellati and G. Jacini (Eds.) Lipids. Raven Press. New York. 89 pp.Google Scholar
  15. BAZAN, N.G., M.G. ILINCHETA de BOSCHERO, N.M. GIUSTO and H. E. PASCUAL de BAZAN (1976) In G. Porcellati, L. Amaducci and C. Galli (Eds.) Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems. Plenum Publishing Corp. New York. 139 pp.Google Scholar
  16. BAZAN, N.G., M.G. ILINCHETA de BOSCHERO and N.M. GIUSTO (1977) In N.G. Bazan, R.R. Brenner and N.M. Giusto (Eds.) Function and Biosynthesis of Lipids. Plenum Publishing Corp. New York. 377 pp.Google Scholar
  17. BISHOP. H.H., and K.P. STRICKLAND (1976) Can. J. Biochem., 54, 249.PubMedGoogle Scholar
  18. BLEADSDALE, J.E., and J.N. HAWTHORNE (1975) J. Neurochem., 24, 373.CrossRefGoogle Scholar
  19. EICHBERG, J., H.M. SHEIN, M. SCHWARTZ, and G. HAUSER (1973) J. Biol. Chem., 248, 3615.PubMedGoogle Scholar
  20. EICHBERG, J., and G. HAUSER (1974) Biochem. Res. Commun. 60, 1460.CrossRefGoogle Scholar
  21. GIUSTO, N.M., and N.G. BAZAN (1973) Biochim. Biophys. Res. Commun., 55, 515.CrossRefGoogle Scholar
  22. GIUSTO, N.M., and N.G. BAZAN (1977) In N.G. Bazan, R.R. Brenner and N.M. Giusto (Eds.) Function and Biosynthesis of Lipids. Plenum Publishing Corp. New York. 481 pp.Google Scholar
  23. GIUSTO, N..M, H.E.P. de BAZAN, M.G.I, de BOSCHERO, M.M. CAREAGA, and N.G. BAZAN (1979) In Abstract Book, Xlth In-ternational Congress of Biochemistry, Toronto, Canada.Google Scholar
  24. GIUSTO, N.M., and N.G. BAZAN (1979a) Exp. Eye Res. (In press).Google Scholar
  25. GIUSTO, N.M., and N.G. BAZAN (1979b) Biochim. Biophys. Res. Commun. (In press).Google Scholar
  26. HEMING, P.J., and A.K.A. HAJRA (1977) J. Biol. Chem., 252, 1663.Google Scholar
  27. HIRATA, F., and J. AXELROD (1978) Nature, 275, 219.PubMedCrossRefGoogle Scholar
  28. KATES, M., and E.L. PUGH. This volume.Google Scholar
  29. LANDS, W.E.M. (1965) Ann. Rev. Biochem., 34, 313.PubMedCrossRefGoogle Scholar
  30. MAC DONALD, G., R.R. BAKER, and W. THOMPSON (1975) J. Neurochem., 24, 655.Google Scholar
  31. NOACK, E., M. KURZMACK, S. VERJOVSKI-ALMEIDA, and G. INESI (1978) J. Pharmacol. Exp. Ther., 206, 281.PubMedGoogle Scholar
  32. POSSMAYER, F., G.L. SHERPHOF, T.M.A.R. DUBBELMAN, L.M.G. GOLDE and L.L.M. VAN DEENEN (1969) Biochim. Biophys. Acta, 176, 95.PubMedGoogle Scholar
  33. POSSMAYER, F. (1974) Biochem. Biophys. Res. Commun., 61, 1415.CrossRefGoogle Scholar
  34. RODRIGUEZ de TURCO, E.B., and N.G. BAZAN (1977). J. Chromatog., 137, 194.CrossRefGoogle Scholar
  35. SCHACHT, J., and B.W. AGRANOFF (1974) J. Biol. Chem., 249, 1551.PubMedGoogle Scholar
  36. SCHNEIDER, P.B. (1972) J. Biol. Chem., 247, 7910.PubMedGoogle Scholar
  37. SINGER, M. (1975) In B.R. Fink (Ed.) Molecular Mechanism of Anesthesia. Raven Press. New York. 223 pp.Google Scholar
  38. SU, K.L., and G.Y. SUN (1978) J. Neurochem., 31, 1043.PubMedCrossRefGoogle Scholar
  39. TAMAI, Y., and W.E.M. LANDS (1974) J. Biochem., 76, 847.PubMedGoogle Scholar
  40. THOMPSON, W. and G. MAC DONALD (1976) Eur. J. Biochem., 65, 107.PubMedCrossRefGoogle Scholar
  41. YAMADA, K., and H. OKUYAMA (1978) Arch. Biochem. Biophys., 190, 409.PubMedCrossRefGoogle Scholar
  42. YAMASHITA, S., N. NAKAYA, M. NUMA (1975) Proc. Nat. Acad. Sci., 72, 600.PubMedCrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1980

Authors and Affiliations

  • Nicolas G. Bazan
    • 1
  • Norma M. Giusto
    • 1
  1. 1.Instituto de Investigaciones BioquímicasUniversidad Nacional del Sur — Consejo Nacional de Investigaciones Científicas y TécnicasBahía BlancaArgentina

Personalised recommendations