Advertisement

Conjugation of foreign chemicals by animals

  • G. D. Paulson
Part of the Residue Reviews book series (RECT, volume 76)

Abstract

Since the industrial revolution, and especially during this century, man and his environment have been exposed to an ever-increasing number of synthetic organic compounds. In many cases the compounds produced by our techology are, in a biological sense, “foreign chemicals” or “xenobiotics.” That is, they are not synthesized by any known biological systems. The use of many of these compounds, which include a variety of drugs and pesticides, has had positive and far-reaching effects, both socially and economically. However, use of some of these foreign chemicals has had unexpected and, in some cases, undesirable effects. The awareness that the production and use of these compounds may have adverse effects on man and the environment has generated a great deal of interest concerning the fate of these compounds in biological systems. Because of this interest and because of the efforts of many investigators (particularly during the past 2 decades) there is now a large amount of published information concerning the metabolic fate of foreign chemicals in animals, including man (Fishman 1970; Lee et al. 1977; Williams 1947, 1959, and 1967; Hathway 1970, 1972, and 1975; Ladu et al. 1971; Parke 1968; Brodie and Gillette 1971; Parke and Smith 1977).

Keywords

Glucuronic Acid Acid Conjugate Animal System Conjugation Reaction Mercapturic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitio, A.: Glucuronide synthesis in the rat and guinea pig lung. Xenobiotica. 3, 13 (1973).PubMedGoogle Scholar
  2. Akitake, H., and K. Kobayashi: Studies on the metabolism of chlorophenols in fish—III. Isolation and identification of a conjugated PCP excreted by goldfish. Bull. Japan. Soc. Scientific Fisheries 41, 321 (1975).Google Scholar
  3. Anderson, P. M., and M. O. Schultze: Cleavage of S-(1,2-dichlorovinyl)-L-cysteine by an enzyme of bovine origin. Arch. Biochem. Biophys. 111, 593 (1965).PubMedGoogle Scholar
  4. Arias, M., G. Fleischer, R. Kirsch, S. Mishxin, and Z. Gatmaitan: On the structure regulation and function of ligandin. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 175. New York: Raven Press (1976). ARTZ, N. E., and E. M. OSMAN: Biochemistry of glucuronic acid. New York: Academic Press (1950).Google Scholar
  5. Axelrod, J.: Demethylation and methylation of drugs and physiologically active compounds. In B. B. Brodie and E. G. Erdös (eds.): Metabolic factors controlling duration of drug action, vol. 6, p. 97. New York: Pergamon Press (1962).Google Scholar
  6. Axelrod, J, Methyl transferase enzymes in the metabolism of physiologically active compounds and drugs. In B. B. Brodie and J. R. Gillette (eds.): Concepts in biochemical pharmacology, part II, p. 601. New York: Springer-Verlag (1971).Google Scholar
  7. Barnsley, E. A.: The metabolism of S-methyl-L-cysteine in the rat. Biochem. Biophys. Acta 90, 24 (1964).PubMedGoogle Scholar
  8. Bauman, E.: Ueber das Vorkommen von Brenzcatechin im Harn. Arch. Ges. Physiol. Pfleugers 12, 63 (1876).Google Scholar
  9. Bedford, C. T., M. J. Crawford, and D. H. Hutson: Sulphoxidation of cyanatryn, a mercapto-sym-triazine herbicide, by rat liver microsomes. Chemosphere 5, 311 (1975).Google Scholar
  10. Blunck, J. M., and C. E. Crowther: Enhancement of azo dye carcinogenesis by dietary sodium sulphate. Eur. J. Cancer 11, 23 (1975).PubMedGoogle Scholar
  11. Boyland, E.: Mercapturic acid conjugation. In B. B. Brodie and E. G. Erdös (eds.): Metabolic factors controlling duration of drug action, Vol. 6, p. 65. New York: Pergamon Press (1962).Google Scholar
  12. Boyland, E.: Mercapturic acid conjugation. In B. B. Brodie and J. R. Gillette (eds.): Concepts in biochemical pharmacology, part II, p. 584. New York: Springer-Verlag (1971).Google Scholar
  13. Boyland, E., and L. F. Chasseaud: The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv. Enzymol. 32, 173 (1969).PubMedGoogle Scholar
  14. Boyland, E., C. H. Kinder, and D. Manson: The biochemistry of aromatic amines. 8. Synthesis and detection of di-(2-amino-l-naphthyl) hydrogen phosphate, a metabolite of 2-naphthylamine in dogs. Biochem. J. 78, 175 (1961).PubMedGoogle Scholar
  15. Boyland, E., C. H. Kinder, and D. Manson, D. Manson, and S. F. D. Orr: The biochemistry of aromatic amines. 2. The conversion of arylamines into aryl sulphamic acids and arylamine-N-glucosiduronic acids. Biochem. J. 65, 417 (1957).PubMedGoogle Scholar
  16. Bremer, J., and D. M. Greenberg: Enzymatic methylation of foreign sulfhydryl compounds. Biochim. Biophys. Acta 46, 217 (1961).Google Scholar
  17. Brodie, B. B., and J. R. Gillette: Handbook of experimental pharmacology, con- cepts in biochemical pharmacology. II. New York: Springer-Verlag (1971).Google Scholar
  18. Brodie, B. B., and J. R. Gillette, and R. P. Maickel: Comparative biochemistry of drug metabolism. In B. B. Brodie and G. Erdös (eds.): Metabolic factors controlling duration of drug action, vol. 6, p. 299. New York: Pergamon Press (1962).Google Scholar
  19. Capel, I. D., P. Millburn, and R. T. Williams• Monophenyl phosphate, a new conjugate of phenol in the cat. Biochem. Soc. Trans. 2, 305 (1974).Google Scholar
  20. Carroll, J., and B. Spencer: Sulphate activation and sulphotransferases in foetal and adult rats. Biochem. J. 94, 20 (1965).Google Scholar
  21. Chabra, R. S., and J. R. Touts: Sex differences in the metabolism of xenobiotics by extrahepatic tissue in rats. Drug Metab. Dispos. 2, 375 (1974).Google Scholar
  22. Chasseaud, L. F.: The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds. Drug Metab. Rev. 2 185 (1973).PubMedGoogle Scholar
  23. Chasseaud, L Conjugation with glutathione and mercapturic acid excretion: In M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 77. New York: Raven Press (1976 a).Google Scholar
  24. Chasseaud, L Properties of the glutathione S-alkene transferase system catalyzing the conjugation of glutathione with diethyl maleate. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 281. New York: Raven Press (1976 b).Google Scholar
  25. Climie, I. J. G., and D. H. Hutson: Proc. 4th Internat. Mtg., Pest. Chem., Internat. Union Pure and Applied Chem. Zurich: Pergamon Press (1978).Google Scholar
  26. Comm, D. F., and D. A. Buyske: The biotransformation of a sulfonamide to a mercaptan and to mercapturic acid and glucuronide conjugates. Biochem. Pharmacol. 14, 457 (1965).Google Scholar
  27. Contr, A., and M. H. Bickel: History of drug metabolism: Discoveries of the major pathways in the 19th century. Drug Metab. Rev. 6, 1 (1977).Google Scholar
  28. Conway, W. D., S. M. Singhui, M. GIBALDI, and R. N. BOYES: The effect of route of administration on the metabolic rate of terbutaline in the rat. Xenobiotica 3, 813 (1973).Google Scholar
  29. Grueling, C. R., N. Morris, H. Sihmzue, H. H. Ong, and J. Daly: Catechol Omethyltransferase. IV. Factors affecting m-and p-methylation of substituted catechols. Mol. Pharmacol. 8, 398 (1972).Google Scholar
  30. Davies, D. S.: Drug metabolism in man. In D. V. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 357. London: Taylor & Francis Ltd. (1977).Google Scholar
  31. Debaun, J. R., E. C. Miller, and J. A. Miller: N-Hydroxy-2-acetylamino-fluorene sulfotransferase: Its probable role in carcinogenesis and in protein—(methion-Syl) binding in rat liver. Cancer Res. 30, 577 (1970).PubMedGoogle Scholar
  32. Debaun, J. R., J. Y. Rowley, E. C. Miller, and J. A. Miller: Sulfotransferase activation of N-hydroxy-2-acetylaminofluorene in the rat. Proc. Amer. Assoc. Cancer Res. 8, 12 (1967).Google Scholar
  33. Demeio, R. H.: Phenol conjugation. III. The type of conjugation in different species. Arch. Biochem. 7, 323 (1945).Google Scholar
  34. Demeio, R. H.: Sulfate activation and transfer in metabolic pathways. In D. M. Greenberg (ed.): Metabolism of sulfur compounds, vol. 7, 3rd ed., p. 287. New York: Academic Press (1975).Google Scholar
  35. Dieterle, W., J. W. Faigle, F. Früh, H. Mory, W. Theobald, K. O. Alt, and W. J. Richter: Metabolism of phenylbutazone in man. Arzneim. Forsch. 26, 572 (1976).Google Scholar
  36. Dodgson, K. S., and F. A. Rose: Sulfoconjugation and sulfohydrolysis. In E. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 1, p. 239. New York: Academic Press (1970).Google Scholar
  37. Dorough, H. W.: Biological activity of pesticide conjugates. In D. D. Kaufman, G. G. Still, G. D. Paulson, and S. K. Bandai (eds.): Bound and conjugated pesticide residues, p. 11. Washington, D. C.: Amer. Chem. Soc. Symposium Series (1976).Google Scholar
  38. Duggan, D. E., J. J. Baldwin, B. H. Arison, and R. E. Rhodes: N-Glucoside formation as a detoxification mechanisms in mammals. J. Pharmacol. Exp. Ther. 190, 563 (1974).PubMedGoogle Scholar
  39. Dutton, G. J.: glucuronic acid, free and combined. New York: Academic Press (1966).Google Scholar
  40. Dutton, G. J, Glucuronide forming enzymes. In B. B. Brodie and J. R. Gillette (eds.): Concepts in biochemical pharmacology, vol. 28, part 2, p. 378. New York: Springer-Verlag (1971).Google Scholar
  41. Dutton, G. J, and B. Burchell: Newer aspects of glucuronidation. In J. W. Bridges and L. F. Chasseaud (eds.): Progress in drug metabolism, vol. 2, p. 1. New York: Wiley (1977).Google Scholar
  42. Dutton, G. J, G. J. Wishart, J. E. A. Leaicey, and M. A. Goner: Conjugation of glucuronic acid and other sugars. In D. E. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 71. London: Taylor & Francis Ltd. (1977).Google Scholar
  43. Fishman, W. H.: Metabolic conjugation and metabolic hydrolysis, vols. 1 and 2. New York: Academic Press (1970).Google Scholar
  44. Frére, J. M., and W. G. Verly: Catechol 0-methyltransferase. The para-and meta-O-methylations of noradrenaline Biochim. Biophys. Acta 235, 73 (1971). GESSNER, T.: Studies of glucuronidation and sulfation in tumor bearing rats. Biochem. Pharmacol. 23, 1809 (1974).Google Scholar
  45. Frére, J. M., and W. G. Verly, and N. Hamanda: Identification of p-nitrophenyl glucoside as a urinary metabolite. J. Pharm. Sci. 59, 1528 (1970).Google Scholar
  46. Frére, J. M., and W. G. Verly, A. Jacknowitz, and C. A. Vollmer: Studies of mammalian glucoside conjugation. Biochem. J. 132, 249 (1973).Google Scholar
  47. M. Jakubows%I: Diethyldithiocarbamic acid methyl ester; a metabolite of disulfiram. Biochem. Pharmacol. 21, 219 (1972).Google Scholar
  48. Gordon, G. R., A. G. Shafizadeh, and J. H. Peters: Polymorphic acetylation of drugs in rabbits. Xenobiotica 3, 133 (1973).PubMedGoogle Scholar
  49. Gram, T. E., G. L. Liiir.Rst, and E. G. Mimnaugh: Enzymic conjugation of foreign chemical compounds by rabbit lung and liver. Drug Metab. Dispos. 2, 254 (1974).Google Scholar
  50. Gregory, J. D.: Sulfate conjugation. In B. B. Brodie and E. G. Erdös (eds.): Metabolic factors controlling duration of drug action, vol. 6, p. 53. New York: Pergamon Press (1962).Google Scholar
  51. Gregory, J. D, and P. W. Ronnurs: Metabolism of sulfur compounds (sulfate metabolism). Ann. Rev. Biochem. 29, 347 (1960).PubMedGoogle Scholar
  52. Grover, P. L.: Conjugations with glutathione. In D. V. Parke and R. L. Smith (eds.): Drug metabolism from microbe to man, p. 105. London: Taylor & Francis Ltd. (1977).Google Scholar
  53. Grünow, W., and C. Boehme: Uber den Stoffwechsel von 2,4,5-T und 2,4-D bei Ratten und Mäusen. Arch. Toxicol. 32, 217 (1974).PubMedGoogle Scholar
  54. Hartiala, K.: Metabolism of hormones, drugs, and other substances by the gut. Physiol. Rev. 53, 496 (1973).PubMedGoogle Scholar
  55. Hartiala, K., Metabolism of foreign substances in the gastrointestinal tract. In D. H. K. LeeGoogle Scholar
  56. H. L. Falk, S. D. Murphy, and S. R. Geiger(eds.): Reactions to environmental agents, section 9. Handbook of physiology, p. 375. Bethesda, MD: Amer. Physiol. Soc. (1977).Google Scholar
  57. Hathway, D. E.: Foreign compound metabolism in mammals, vols. 1, 2, and 3. London: The Chemical Society, Burlington House (1970, 1972, and 1975 ).Google Scholar
  58. Hearse, D. J., and W. W. Weber: Multiple N-acetyltransferases and drug metabolism, tissue distribution, characterization and significance of mammalian N-acetyltransferase. Biochem. J. 132, 519 (1973).PubMedGoogle Scholar
  59. Hiram, P. C., J. R. Idle, and P. Millburn: Some aspects of the biosynthesis and excretion of xenobiotic conjugates in mammals. In D. V. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 299. London: Taylor & Francis Ltd. (1977).Google Scholar
  60. Hollingsworth, R. M.: Biochemistry and significance of transferase reactions in the metabolism of foreign chemicals. In: Reactions to Environmental Agents, Section 9. Handbook of Physiology, p. 455. Bethesda, MD: Amer. Physiol. Soc. (1977).Google Scholar
  61. Hucker, H. B.: Intermediates in drug metabolism reactions. Drug Metab. Rev. 2, 33 (1973).Google Scholar
  62. Hunter, J., and L. F. Chasseaud: Clinical aspects of microsomal enzyme induction. In J. W. Bridges and L. F. Chasseaud (eds.): Progress in drug metabolism, vol. 1, p. 129. New York: Wiley (1976).Google Scholar
  63. Hutson, D. H.: Mechanisms of biotransformation. In D. E. Hathway, Senior Reporter: Foreign compound metabolism in mammals, vol. 1, p. 314. London: The Chemical Society, Burlington House (1970).Google Scholar
  64. Hutson, D. H, Mechanisms of biotransformations. In D. E. Hathway, Senior Reporter: Foreign compound metabolism in mammals, vol. 2, p. 328. London: The Chemical Society, Burlington House (1972).Google Scholar
  65. Hutson, D. H, Mechanisms of biotransformations. In D. E. Hathway, Senior Reporter: Foreign compound metabolism in mammals, vol. 3, p. 449. London: The Chemical Society, Burlington House (1975).Google Scholar
  66. Hutson, D. H, Glutathione conjugates. In D. D. Kaufman, G. G. Still, G. D. Paulson, and S. D. Bandai (eds.): Bound and conjugated pesticide residues, p. 103. Washington, D. C.: American Symposium Series 29, Amer. Chem. Soc. (1976).Google Scholar
  67. Iqbal, Z. M., and R. E. Menzer: Metabolism of O-ethyl-S-S-dipropylphosphorodithioate in rats and liver microsomal systems. Biochem. Pharmacol. 21, 1569 (1972).PubMedGoogle Scholar
  68. Irving, C. C.: Conjugates of N-hydroxy compounds. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 1, p. 53. New York: Academic Press (1970).Google Scholar
  69. Irving, C, Metabolic activation of N-hydroxy compounds by conjugation. Xenobiotica 1, 387 (1971).PubMedGoogle Scholar
  70. Irving, C, Interactions of chemical carcinogens with DNA, In H. Busch (ed.): Methods in cancer research, p. 189 (1973).Google Scholar
  71. Jaxoby, W. B.: The glutathione S-transferases A group of multifunctional detoxification proteins. Adv. Enzymol. 46, 383 (1978).Google Scholar
  72. Jaxoby, W. B, W. H. Habig, J. H. Keen, J. N. Ketley, and M. J. Pabst: Glutathione Stransferases: Catalytic aspects. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 189. New York: Raven Press (1976 a).Google Scholar
  73. Jaxoby, W. B, J. N. Ketley, and W. H. Habig: Rat glutathione S-transferases: Binding and physical properties. In M. Arias and W. B. Jakoby (eds.): Glutathione metabolism and function, p. 213. New York: Raven Press (1976 b).Google Scholar
  74. James, M. O., R. L. Smith, R. T. Williams, and M. Reidenberg: The conjugation of phenyl acetic acid in man, subhuman primates and some primate species. Proc. Roy. Soc. London, Ser. B. 182, 25 (1972).Google Scholar
  75. Javitt, N. B.: Biochemical probes for the study of binding and conjugation of glutathione S-transferases. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 309. New York: Raven Press (1976).Google Scholar
  76. Jerine, D. M.: Products, specificity and assay of glutathione S-transferase with epoxide substrates. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 267. New York: Raven Press (1976).Google Scholar
  77. Jerine, D. M.: and J. W. Daly: Arene oxides: A new aspect of drug metabolism. Science 185, 573 (1974).Google Scholar
  78. Jones, A. R.: The metabolism of biological alkylating agents. Drug Metab. Rev. 2, 71 (1973).Google Scholar
  79. Jordon, B. J., and M. J. Rance: Taurine conjugation of fenclofenac in the dog. J. Pharm. Pharmacol. 26, 359 (1974).Google Scholar
  80. Kadlubar, F. F., J. A. Miller, and E. C. s: Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res. 37, 805 (1977).PubMedGoogle Scholar
  81. Kaplowrrz, N., and G. Clifton: The glutathione S-transferases in rat liver and kidney: Drug induction, hormonal influences and organic anion-binding. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 301. New York: Raven Press (1976).Google Scholar
  82. Katz, R., and A. E. Jacobson: Chemical structure-activity correlation in the Omethylation of substituted catechols by catechol 0-methyltransferase. Mol. Pharmacol. 8, 594 (1972).PubMedGoogle Scholar
  83. Kennedy, K. A., K. A. Halmi, and L. J. Fischer: Urinary excretion of a quaternary ammonium glucuronide of cyproheptadine in humans undergoing chronic drug therapy. Life Sci. 21, 1813 (1978).Google Scholar
  84. Kiese, M.: The biochemical production of ferrihemoglobin-forming derivative from aromatic amines, and mechanisms of ferrihemoglobin formation. Pharmacol. Rev. 18, 1091 (1966).PubMedGoogle Scholar
  85. King, C. M., and C. W. Olive: Comparative effects of strain, species, and sex on the acetyltransferase-and sulfotransferase-catalyzed activations of N-hydroxy-N-2fluorenylaeetamide. Cancer Res. 35, 906 (1975).PubMedGoogle Scholar
  86. Kobayashi, K., H. Akitake, C. Matsuda, and S. Kumura: Studies on the metabolism of chlorophenols in fish. V. Isolation and identification of a conjugated phenol excreted by goldfish, Bull. Japan. Soc. Scient. Fisheries 41, 1277 (1975).Google Scholar
  87. Kobayashi, K., H. Akitake, C. Matsuda, and S. Kumura, S. Kimura, and H. Akitake: Studies on the metabolism of chlorophenols in fish. VII. S.lfate conjugation of phenol and PCP by fish livers. Bull. Japan. Soc. Scient. Fisheries 42, 171 (1976).Google Scholar
  88. Kuryznske, J. S., and J. T. Smith: A relationship between the dietary history of a rat and the relative conjugation of glucuronate and sulfate with salicylamide. Fed. Proc. 34, 882 (1975).Google Scholar
  89. Labow, R. S., and D. S. Layne: A comparison of glucoside formation by liver preparations from the rabbit and the mouse. Biochem. J. 142, 75 (1974).PubMedGoogle Scholar
  90. Ladu, B. N., H. G. Mandel, and E. L. Way: Fundamentals of drug metabolism and drug disposition. Baltimore: William & Wilkins (1971).Google Scholar
  91. Laduron, P. M., W. R. Gommeren, and J. E. Leysen: N-MetilylatiOn of biogenic amines. I. Characterization and properties of an N-methyltransferase in rat brain using 5-methyltetrahydrofolic acid as the methyl donor. Biochem. Pharmacol. 23, 1599 (1974).PubMedGoogle Scholar
  92. Lamoureux, G., and K. L. Davison: Mercapturic acid formation in the metabolism of propachlor, CDAA, and Fluorodifen in the rat. Pest. Biochem. Physiol. 5, 497 (1975).Google Scholar
  93. Layne, D. W.: New metabolic conjugates of steroids. In W. D. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 1, p. 22. New York: Academic Press (1970).Google Scholar
  94. Lee, D. H. K., H. L. Falk, S. D. Murphy, and S. R. Geiger: Reactions to environmental agents. Handbook of physiology, section 9. Bethesda, MD: Amer. Physiol. Soc. (1977).Google Scholar
  95. Levy, G.: Dose dependent effects in pharmacokinetics. In D. H. Tedeschi and R. E. Tedeschi (eds.) Importance of fundamental principles in drug evaluation, p. 141. New York: Raven Press (1968).Google Scholar
  96. Levy, G, Drug biotransformation interactions in man: Nonnarcotic analgesics. Ann. N.Y. Acad. Sci. 179, 32 (1971).PubMedGoogle Scholar
  97. Levy, G, T. Tsuchiya, and L. P. Amsel: Limited capacity for salicyl phenolic glucuronide formation and its effect on the kinetics of salicylate elimination in man. Clin. Pharmacol. Therap. 13, 258 (1972).Google Scholar
  98. Levy, G, B. Yagen, and R. Mechovlam: Identification of a C-glucuronide of O6tetra-hydrocannabinol as a mouse liver conjugate, in vivo. Science 200, 1931 (1978).Google Scholar
  99. Listowsky, I., K. Kamisaka, K. Ishitani, and I. M. Arias: Structures and properties of ligandin. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 233. New York: Raven Press (1976).Google Scholar
  100. Lotlikar, P. D.: Enzymatic N-O-methylation of hydroxyamic acids. Biochim. Biophys. Acta. 170, 468 (1968).PubMedGoogle Scholar
  101. Lotlikar, P. D, and M. B. Wasserman: Reactive phosphate ester of the carcinogen 2- (Nhydroxy) acetamido-fluorene. Biochem. J. 120, 661 (1970).PubMedGoogle Scholar
  102. Mcbain, J. B., and J. J. Menn: S-Methylation, oxidation, hydroxylation and conjugation of thiophenol in the rat. Biochem. Pharmacol. 18, 2282 (1969).PubMedGoogle Scholar
  103. Meister, A.: Glutathione synthesis. In P. H. Boyer (ed.): The enzymes, vol. 10, p. 671. New York: Academic Press (1974).Google Scholar
  104. Meister, A., Biochemistry of glutathione. In D. M. Greenberg (ed.): Metabolism of sulfur compounds, 3rd ed., p. 101. New York: Academic Press (1975).Google Scholar
  105. Miettinen, T. A., and E. Leskinen: Glucuronic acid pathway. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 1, p. 157. New York: Academic Press (1970).Google Scholar
  106. Millburn, P.: Factors affecting glucuronidation in vivo. Biochem. Soc. Trans. 2, 1182 (1974).Google Scholar
  107. Miller, E. C., and J. A. Miller: Biochemical mechanisms of chemical carcinogenesis. In H. Bush (ed.): The molecular biology of cancer, p. 377. New York: Academic Press (1974).Google Scholar
  108. Miller, J. A., and E. C. Miller: Metabolic activation of carcinogenic aromatic amines and amides via N-hydroxylation and N-hydroxyesterification and its relationship to ultimate carcinogens as electrophilic reactants. In E. D. Bergmann and B. Pulman (eds.): Physiochemical mechanisms of carcinogenesis, vol. 1, p. 237. New York: Academic Press (1969).Google Scholar
  109. Miller, J. A., and E. C. Miller, The concept of reactive electrophilic metabolites in chemical carcinogenesis: Recent results with aromatic amines, safrole and aflatoxin Bi. In D. J. Jollow, J. J. Kossis, R. Snyder, and H. Vainio (eds.): Biological reactive intermediates-Formation, toxicity and inactivation, p. 6. New York: Plenum Press (1977).Google Scholar
  110. Miller, J. J., G. M. Powell, A. H. Olavesen, and C. G. Curtis: The fate of 2,6-dimethoxy [U-’C] phenol in the rat. Xenobiotica 4, 285 (1974).PubMedGoogle Scholar
  111. Minck, K., R. B. Schupp, H. P. A. Illing, G. F. Kahl, and K. J. Nerrer: Interrelationship between dimethylation of p-nitroanisole and conjugation of p-nitrophenol in rat liver. Naunyn-Schmiedebergs Arch. Pharmacol. 279, 347 (1973).Google Scholar
  112. Mitchell, J. R., J. A. Hinson, and S. D. Nelson: Glutathione and drug-induced tissue lesions. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 357. New York: Raven Press (1976).Google Scholar
  113. Moore, D. H.: Species, sex and strain differences in metabolism. In D. E. Hathway (ed.): Foreign compound metabolism in mammals, vol. 2, p. 398. London Chemical Society (1972).Google Scholar
  114. Mudd, S. H.: Biochemical mechanisms in methyl group transfer. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 3, p. 297. New York: Academic Press (1973).Google Scholar
  115. Mulder, G. J., and A. H. E. Pilon: UDP glucuronyltransferase and phenolsulfotransferase from rat liver in vivo and in vitro. III. The effect of phenolphthalein and its sulfate and glucuronide conjugate on conjugation and biliary excretion of harmol. Biochem. Pharmacol. 24, 517 (1975).PubMedGoogle Scholar
  116. Oehme, F. W.: Species differences: The basis for and importance of comparative toxicology. Clin. Toxicol. 3, 5 (1970).PubMedGoogle Scholar
  117. Park, D. V.: The biochemistry of foreign compounds. Internat. Ser. Monographs Pure & Applied Biol. Biochem. Div. New York: Pergamon Press (1968).Google Scholar
  118. Parke, D. F., and R. L. Smith(eds.): Drug metabolism—From microbe to man. London: Taylor and Francis Ltd. (1977).Google Scholar
  119. Paulson, G. D.: Sulfate ester conjugates—their synthesis, purification, hydrolysis, and chemical spectral properties. In D. D. Kaufman, G. G. Still, G. D. Paulson, and S. D. Bandal (eds.): Bound and conjugated pesticide residues, p. 86. Washington, D. C.: Amer. Chem. Soc. Symposium Series (1976).Google Scholar
  120. Paulson, G. D, and M. V. Zehr: Metabolism of p-chlorophenyl N-methylcarbamate in the chicken. J. Agr. Food Chem. 19, 471 (1971).Google Scholar
  121. Peck, H. D.: Sulfation linked to AIT cleavage. In P. D. Boyer (ed.): The enzymes, vol. 10, p. 651. New York: Academic Press (1974).Google Scholar
  122. Porter, C. C., B. H. Arison, V. F. Gruber, D. C. Flus, and W. J. A. Vandenheuval: Human metabolism of cyproheptadine. Drug Metab. Dispos. 3, 189 (1975).Google Scholar
  123. Radomski, J. L., W. L. Hearn, T. Radomski, H. Moreno, and W. E. Scorr: Isolation of the glucuronic acid conjugate of N-hydroxy-4-aminobiphenyl from dog urine and its mutagenic activity. Cancer Res. 37, 1757 (1977).PubMedGoogle Scholar
  124. Remy, C. N.: Metabolism of thiopyrimidines and thiopurines: S-Methylation with Sadenonylethionine transmethylase and catabolism in mammalian tissues. J. Biol. Chem. 238, 1078 (1963).PubMedGoogle Scholar
  125. Richter, W. J., K. O. Alt, W. Dieterly, J. W. Faigle, H. P. Kriemler, H. Moryand T. Winkler: C-Glucuronides, a novel type of drug metabolites. Helv. Chim. Acta 58, 2512 (1975).PubMedGoogle Scholar
  126. Robbins, P. W.: Sulfate transfer. In P. D. Boyer, H. Lardy, and K. Myrbäck (eds.): The enzymes, vol. 6, 2nd ed., p. 363. New York: Academic Press (1962).Google Scholar
  127. Roy, A. B.: The synthesis and hydrolysis of sulfate esters. Adv. Enzymol. 22, 205 (1960).Google Scholar
  128. Roy, A. B, Sulphate conjugation enzymes. Handbuch der Experimentellen Pharmakologie 28, 536 (1971).Google Scholar
  129. Sarrif, A. M., and C. Heidelberger: On the interaction of chemical carcinogens with soluble proteins of target tissues and in cell culture. In I. M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 317. New York: Raven Press (1976).Google Scholar
  130. Sato, T., T. Suzuki, and T. Fukuyama: Studies on conjugation of [’S] sulfate with phenolic compounds. IV. Metabolism of o-cresol, m-cresol, salicyladehyde, salicylic acid, toluene, benzoic acid and related substances in rat’s liver. J. Biochem. 43, 421 (1956).Google Scholar
  131. Sieber, S. M., and R. H. Adamson: The metabolism of xenobiotics by fish. In D. W. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 233. London: Taylor & Francis Ltd. (1977).Google Scholar
  132. Skian, N., and E. A. Barnsley: The metabolism of S-methyl-L-cysteine. Biochem. J. 107, 217 (1968).Google Scholar
  133. Slotkin, T., and V. Distefano: Urinary metabolites of harmine in the rat and their inhibition of monoanine oxidase. Biochem. Pharmacol. 19, 125 (1970).PubMedGoogle Scholar
  134. Smith, J. N.: Detoxication mechanisms in insects. Biol. Rev. Cambridge Philos. Soc. 30, 455 (1955).Google Scholar
  135. Smith, J. N, The comparative metabolism of xenobiotics. Adv. Comp. Physiol. Biochem. 3, 173 (1968).PubMedGoogle Scholar
  136. Smith, J. N, Comparative detoxication of invertebrates. In D. V. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 219. London: Taylor & Francis Ltd. (1977).Google Scholar
  137. Smith, R. G., G. C. Daves, JR., R. K. Lynn, and N. Gerber: Hydantoin ring glucuronidation: Characterization of a new metabolite of 5,5-diphenylhydantoin in man and the rat. Biomed. Mass Spec. 4, 275 (1977).Google Scholar
  138. Smith, R. L., and J. Caldwell: Drug metabolism in non-human primates. In D. V. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 331. London: Taylor & Francis Ltd. (1977).Google Scholar
  139. Smith, R. L., and J. Caldwell, and R. T. Williams: Implication of the conjugation of drugs and other exogenous compounds. In G. J. Dutton (ed.): Glucuronic acid, p. 457. New York: Academic Press (1966).Google Scholar
  140. Smith, R. L., and J. Caldwell, and R. T. Williams, History of the discovery of the conjugation mechanisms. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 1, p. 1. New York: Academic Press (1970).Google Scholar
  141. Sullivan, H. R., S. L. Due, and R. E. Mcmahon: Metabolism of a-1-methadol; Nacetylation, a new metabolic pathway. Res. Comm. Chem. Pathol. Pharmacol. 6, 1072 (1973).Google Scholar
  142. Tate, S. S., G. A. Thompson, and A. Meister: Recent studies on y-glutamyl trans-peptidase. In M. Arias and W. B. Jakoby (eds.): Glutathione: Metabolism and function, p. 45. New York: Raven Press (1976).Google Scholar
  143. Usdin, E., and S. H. Snyder: Frontiers in catacholamine research. New York: Pergamon Press (1973).Google Scholar
  144. Vainio, H., and A. Aino: Enhancement of microsomal drug hydroxylation and glucuronidation in rat liver by phenobarbital and 3-methylcholanthrene in combination. Acta Pharmacol. Toxicol. 34, 130 (1974).Google Scholar
  145. Vaisman, S. L., and K. S. Lee, and L. M. Gartner: Xylose, glucose, and glucuronic acid conjugation in the newborn rat. Pediatr. Res. 10, 967 (1976).PubMedGoogle Scholar
  146. Vessey, D. A., and D. Zatim: The identification of a unique p-nitrophenol conjugating enzyme in guinea pig liver microsomes. Biochim. Biophys. Acta 315, 43 (1973).PubMedGoogle Scholar
  147. Vestermark, A., and H. Boström: On the sulphurylation of mono-di- and trihydric phenols. Experientia 16, 408 (1960).PubMedGoogle Scholar
  148. Wakabayashi, M.: ß-Glucuronidases in metabolic hydrolysis. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 2, p. 520. New York: Academic Press (1970).Google Scholar
  149. Weber, W. W.: Acetylating, deacetylating and amino acid conjugating enzymes. In B. B. Brodie and J. R. Gillette (eds.): Handbook of experimental pharmacology. Concepts in biochemical pharmacology II, vol. 28, part 2, p. 564. New York: Springer-Verlag (1971).Google Scholar
  150. Weber, W. W., Acetylation of drugs. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 3, p. 249. New York: Academic Press (1973).Google Scholar
  151. Weissburger, J. H., R. S. Yamamoto, G. M. Williams, P. H. Grantham, T. Matsu-Shima, and E. K. Weisburger: On the sulfate ester of N-hydroxy-N-2-fluorenylacetamide as a key ultimate hepatocarcinogen in the rat. Cancer Res. 32, 491 (1972).Google Scholar
  152. Wengle, B.: Studies on ester sulphates; on sulphate conjugation in foetal human tissue extracts. Acta Soc. Med. Upsalien 69, 105 (1963).Google Scholar
  153. Williams, F. M., R. H. Briant, C. T. Dollery, and D. S. Davies: The influence of the route of administration on urinary metabolites of isoetharine. Xenobiotica 4, 345 (1974).PubMedGoogle Scholar
  154. Williams, R. T.: Detoxication mechanisms, 1st and 2nd eds. London: Chapman & Hall (1947 and 1959 ).Google Scholar
  155. Williams, R. T, The biogenesis of conjugation and detoxication products. In P. Bernfield (ed.): Biogenesis of natural compounds, 2nd ed., p. 589. New York: Pergamon Press (1967).Google Scholar
  156. Williams, R. T, Introduction: Pathways of drug metabolism. In B. B. Brodie and J. R. Gillette (eds.): Concepts in biochemical pharmacology, part II, p. 233. New York: Springer-Verlag (1971).Google Scholar
  157. Williams, R. T, Inter-species variation in the metabolism of xenobiotics. Biochem. Soc. Trans. 2, 359 (1974).Google Scholar
  158. Wit, J. G.: Drug metabolism in avian species. In D. V. Parke, and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 247. London: Taylor & Francis Ltd. (1977).Google Scholar
  159. Wood, J. L.: Biochemistry of mercapturic acid formation. In W. H. Fishman (ed.): Metabolic conjugation and metabolic hydrolysis, vol. 2, p. 261. New York: Academic Press (1970).Google Scholar
  160. Yager, B., S. Levy, and R. Mechovi.AM:Synthesis and enzymatic formation of Cglucuronide of Y-tetrahydrocannabinol. J. Amer. Chem. Soc. 99, 6444 (1977).Google Scholar
  161. Young, L.: The metabolism of foreign compounds—History and development. In D. V. Parke and R. L. Smith (eds.): Drug metabolism—From microbe to man, p. 1. London: Taylor & Francis Ltd. (1977).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • G. D. Paulson
    • 1
  1. 1.Metabolism and Radiation Research Laboratory, Agricultural Research, Science and Education AdministrationU. S. Department of AgricultureFargoUSA

Personalised recommendations