Skip to main content

Cuticular Water Relations Techniques

  • Chapter
Cuticle Techniques in Arthropods

Part of the book series: Springer Series in Experimental Entomology ((SSEXP))

Abstract

This chapter is restricted, because of the author’s interests and experience, to the techniques involved in studying the water relations of the cuticle of terrestrial arthropods. Thus, purely aquatic Arthropoda such as most Crustacea, the Xiphosura, and insects in their aquatic stages will be ignored in the following treatment. This will certainly seem arbitrary to some workers, but even within the Insecta there is a great diversity of cuticle structure and function, so much so that Beament (1976) has warned against the tendency to talk of “the cuticle” as if there were only one model—that arising from biophysical studies remote from the ecology of the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph EF (1932) The vapor tension relations of frogs. Biol. Bull. Woods Hole 62:112–125.

    Article  Google Scholar 

  • Ahearn GA (1970a) The control of water loss in desert tenebrionid beetles. J Exp Biol 53:573–595.

    PubMed  CAS  Google Scholar 

  • Ahearn GA (1970b) Water balance in the whipscorpion, Mastigoproctus gigan-teus (Lucas) (Arachnida, Uropygi). Comp Biochem Physiol 35:339–353.

    Article  Google Scholar 

  • Ahearn GA, Hadley NF (1969) The effects of temperature and humidity on water loss in two desert tenebrionid beetles, Eleodes armata and Cryptoglossa verrucosa. Comp Biochem Physiol 30:739–749.

    Article  Google Scholar 

  • Alexander A, Ewer DW (1955) A note on the function of the eversible sacs of the onychophoran, Opisthopatus cinctipes Purcell. Ann Natal Mus 13:217–222.

    Google Scholar 

  • Alexander P, Kitchener JA, Briscoe HVA (1944) The effect of waxes and inorganic powders on the transpiration of water through celluloid membranes. Trans Faraday Soc 40:10–19.

    Article  CAS  Google Scholar 

  • Armold MT, Blomquist GJ, Jackson LL (1969) Cuticular lipids of insects—III. The surface lipids of the aquatic and terrestrial life forms of the big stonefly, Pteronarcys californica Newport. Comp Biochem Physiol 31:685–692.

    CAS  Google Scholar 

  • Beament JWL (1945) The cuticular lipoids of insects. J Exp Biol 21:115–131.

    Google Scholar 

  • Beament JWL (1948a) Interaction of water and porous materials. III Zoological aspects. The role of wax layers in the waterproofing of insect cuticle and eggshell. Disc Faraday Soc 3:177–182.

    Article  Google Scholar 

  • Beament JWL (1948b) The penetration of the insect egg-shells. I.—Penetration of the chorion of Rhodnius prolixus, Stal. Bull Entomol Res 39:359–383.

    CAS  Google Scholar 

  • Beament JWL (1949) The penetration of insect egg-shells. II.—The properties and permeability of subchorial membranes during development of Rhodnius prolixus, Stål. Bull Entomol Res 39:467–488.

    CAS  Google Scholar 

  • Beament JWL (1954) Water transport in insects. Symp Soc Exp Biol 8:94–117.

    Google Scholar 

  • Beament JWL (1955) Wax secretion in the cockroach. J Exp Biol 32:514–538.

    Google Scholar 

  • Beament JWL (1958a) Measurement and control of temperature. In: Donaldson PEK (ed) Electronic apparatus for biological research. Butterworth, London.

    Google Scholar 

  • Beament JWL (1958b) Measurement and control of humidity. In: Donaldson PEK (ed) Electronic apparatus for biological research. Butterworth, London.

    Google Scholar 

  • Beament JWL (1958c) The effect of temperature on the waterproofing mechanism of an insect. J Exp Biol 35:494–519.

    CAS  Google Scholar 

  • Beament JWL (1958d) Why an insect is so waterproof. New Sci 4:847–850.

    Google Scholar 

  • Beament JWL (1959) The waterproofing mechanism of arthropods. I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J Exp Biol 36:391–422.

    CAS  Google Scholar 

  • Beament JWL (1961a) The water relations of insect cuticle. Biol Rev 36:281–320.

    Article  PubMed  CAS  Google Scholar 

  • Beament JWL (1961b) Electrical properties of orientated lipid on a biological membrane. An electrostatic diffusion barrier and ion pump. Nature 191:217–221.

    CAS  Google Scholar 

  • Beament JWL (1961c) The waterproofing mechanism of arthropods. II. The permeability of the cuticle of some aquatic insects. J Exp Biol 38:277–290.

    CAS  Google Scholar 

  • Beament JWL (1962) The surface properties of insects—some evolutionary and ecological implications. Proc Linn Soc London 173:115–119.

    Article  Google Scholar 

  • Beament JWL (1964) The active transport and passive movement of water in insects. Adv Insect Physiol 2:67–129.

    Article  CAS  Google Scholar 

  • Beament JWL (1965) The active transport of water: Evidence, models and mechanisms. Symp Soc Exp Biol 19:273–298.

    PubMed  CAS  Google Scholar 

  • Beament JWL (1976) The ecology of cuticle. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam.

    Google Scholar 

  • Beament JWL, Machin KE (1959) Thermostat suitable for controlling air temperature, particularly in biological research. J Sci Instr 36:87–89.

    Article  CAS  Google Scholar 

  • Beament JWL, Noble-Nesbitt J, Watson JAL (1964) The waterproofing mechanisms of arthropods. III. Cuticular permeability in the firebrat, Thermobia domestica (Packard). J Exp Biol 41:323–330.

    Google Scholar 

  • Bennet-Clark HC (1962) Active control of the mechanical properties of insect en-docuticle. J Insect Physiol 8:627–633.

    Article  Google Scholar 

  • Berridge MJ (1970) Osmoregulation in terrestrial arthropods. In: Florkin M, Scheer BT (eds) Chemical zoology: Vol 5, Arthropoda Part A. Academic Press, New York.

    Google Scholar 

  • Bonting SL, Mayron BR (1961) Construction, calibration and use of a modified quartz fiber “fishpole” ultramicrobalance. Microchem J 5:31–42.

    Article  CAS  Google Scholar 

  • Borror DJ, De Long DM, Triplehorn CA (1976) An introduction to the study of insects, 4th edn. Holt, New York.

    Google Scholar 

  • Browning TO (1967) Water, and the eggs of insects. In: Beament JWL, Treherne JE (eds) Insects and physiology. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Bursell E, (1950) The transpiration of terrestrial isopods. PhD dissertation, University of Cambridge.

    Google Scholar 

  • Bursell E (1955) The transpiration of terrestrial isopods. J Exp Biol 32:238–255.

    CAS  Google Scholar 

  • Bursell E (1958) The water balance of tsetse pupae. Philos Trans R Soc London Ser B 241:179–210.

    Article  Google Scholar 

  • Bursell E (1974) Environmental aspects—humidity. In: Rockstein M (ed) Physiology of Insecta, 2nd edn, Vol II. Academic Press, New York.

    Google Scholar 

  • Buxton PA (1931) The measurement and control of atmospheric humidity in relation to entomological problems. Bull Entomol Res 22:431–447.

    Article  CAS  Google Scholar 

  • Buxton PA, Mellanby K (1934) The measurement and control of humidity. Bull Entomol Res 25:171–175.

    Article  CAS  Google Scholar 

  • Campbell GS, Trull JW, Gardner WH (1968) A welding technique for Peltier thermocouple psychrometers. Soil Sci Soc Am Proc 32:887–889.

    Article  Google Scholar 

  • Chefurka W, Pepper JH (1954) Determination of the constants employed in calculating the surface area of the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae). Can Entomol 86:554–561.

    Article  Google Scholar 

  • Chefurka W, Pepper JH (1955a) Studies on the cuticle of the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae). I. General properties of the cuticle. Can Entomol 87:145–151.

    CAS  Google Scholar 

  • Chefurka W, Pepper JH (1955b) Studies on the cuticle of the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae). II. Permeability of the cuticle to water at various temperatures. Can Entomol 87:151–163.

    CAS  Google Scholar 

  • Chefurka W, Pepper JH (1955c) Studies on the cuticle of the grasshopper Melanoplus bivittatus (Say) (Orthoptera: Acrididae). III. On the physical nature of the transition region of insect waxes. Can Entomol 87:163–171.

    CAS  Google Scholar 

  • Cloudsley-Thompson JL (1950) The water relations and cuticle of Paradesmus gracilis (Diplopoda, Strongylosomidae). Q J Microsc Sci 91:453–464.

    Google Scholar 

  • Cloudsley-Thompson JL (1957) Studies in diurnal rhythms.—V. Nocturnal ecology and water-relations of the British cribellate spiders of the genus Ciniflo. Bl. J Linn Soc Zool 43:134–152.

    Article  Google Scholar 

  • Cloudsley-Thompson JL (1961) Some aspects of the physiology and behaviour of Galeodes arabs. Entomol Exp Appl 4:257–263.

    Article  Google Scholar 

  • Cloudsley-Thompson JL (1962) Some aspects of the physiology and behaviour of Dinothrombium (Acari). Entomol Exp Appl 5:69–73.

    Article  Google Scholar 

  • Coenen-Stass D, Kloft W (1976a) Transpirationsmessungen an den beiden schabenarten Periplaneta americana und Blaberus trapezoideus. J Insect Physiol 22:945–950.

    Article  Google Scholar 

  • Coenen-Stass D, Kloft W (1976b) Sorptionsmessungen an den beiden schabenarten Periplaneta americana und Blaberus trapezoideus. J Insect Physiol 22:1127–1133.

    Article  Google Scholar 

  • Coenen-Stass D, Kloft WJ (1977) Auswirkungen der Verdunstungsk und der Stoffwechselwärme auf die Körpertemperature der Schabenarten Periplaneta americana und Blaberus trapezoideus. J Insect Physiol 23:1397–1406.

    Article  Google Scholar 

  • Coutchié PA, Crowe JH (1979) Transport of water vapor by tenebrionid beetles. I. Kinetics. Physiol Zool 52:67–87.

    Google Scholar 

  • Crawford CS (1972) Water relations in a desert millipede Orthoporus ornatus (Girard) (Spirostreptidae). Comp Biochem Physiol 42A:521–535.

    Article  Google Scholar 

  • Crawford CS, Wooten RC (1973) Water relations in Diplocentrus spitzen, a semimontane scorpion from the southwestern United States. Physiol Zool 46:218–229.

    Google Scholar 

  • Crisp DJ, Thorpe WH (1948) Interaction of water and porous materials. III. Zoological aspects. The water-protecting properties of insect hairs. Disc Faraday Soc 3:210–220.

    Google Scholar 

  • Davies ME, Edney EB (1952) The evaporation of water from spiders. J Exp Biol 29:571–582.

    Google Scholar 

  • Davis M-TB (1974a) Critical temperature and changes in cuticular lipids in the rabbit tick, Haemaphysalis leporispalustris. J Insect Physiol 20:1087–1100.

    Article  PubMed  CAS  Google Scholar 

  • Davis M-TB (1974b) Changes in critical temperature during nymphal and adult development in the rabbit tick, Haemaphysalis leporispalustris (Acari: Ix-odides: Ixodidae). J Exp Biol 60:85–94.

    Google Scholar 

  • Dennell R (1946) A study of an insect cuticle: The larval cuticle of Sarcophaga falculata Pand. (Diptera). Proc R Soc London Ser B 133:348–373.

    Article  CAS  Google Scholar 

  • Devine TL, Wharton GW (1973) Kinetics of water exchange between a mite, Laelaps echidnina, and the surrounding air. J Insect Physiol 19:243–254.

    Article  PubMed  CAS  Google Scholar 

  • Drummond FH (1953) The eversible vesicles of Campodea (Thysanura). Proc R Entomol Soc London Ser A 28:145–148.

    Google Scholar 

  • Dunbar BS, Winston PW (1975) The site of active uptake of atmospheric water in larvae of Tenebrio molitor. J Insect Physiol 21:495–500.

    Article  Google Scholar 

  • Ebeling W (1974) Permeability of insect cuticle. In: Rockstein M (ed) The physiology of insecta, 2nd edn, Vol VI. Academic Press, New York.

    Google Scholar 

  • Ebeling W (1976) Insect integument: A vulnerable organ system. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam.

    Google Scholar 

  • Eder R (1940) Die kutikuläre Transpiration der Insekten und ihre Abhängigkeit von Aufbau des Integumentes. Zool Jahrb Abt Allg Zool Physiol Teire 60:203–237.

    Google Scholar 

  • Edney EB (1951) The evaporation of water from woodlice and the millipede Glomeris. J Exp Biol 28:91–115.

    PubMed  CAS  Google Scholar 

  • Edney EB (1952) An electrical hygrometer suitable for microclimatic measurements. Trans Int Congr Entomol, 9th 1:525–530.

    Google Scholar 

  • Edney EB (1953) The construction and calibration of an electrical hygormeter suitable for microclimatic measurements. Bull Entomol Res 44:333–342.

    Article  CAS  Google Scholar 

  • Edney EB (1966) Absorption of water vapour from unsaturated air by Arenivaga sp. (Polyphagidae, Dictyoptera). Comp Biochem Physiol 19:387–408.

    Article  CAS  Google Scholar 

  • Edney EB (1971a) Some aspects of water balance in tenebrionid beetles and a thysanuran from the Namib Desert of Southern Africa. Physiol Zool 44:61–76.

    Google Scholar 

  • Edney EB (1971b) The body temperature of tenebrionid beetles in the Namib desert of Southern Africa. J Exp Biol 55:253–272.

    Google Scholar 

  • Edney EB (1977) Water balance in land arthropods. Springer, Berlin.

    Google Scholar 

  • Edney EB, McFarlane J (1974) The effect of temperature on transpiration in the desert cockroach, Arenivaga investigata, and in Periplaneta americana. Physiol Zool 47:1–12.

    Google Scholar 

  • Edney EB, Spencer JO (1955) Cutaneous respiration in woodlice. J Exp Biol 32:256–269.

    CAS  Google Scholar 

  • Eggert R (1946) The construction and installation of thermocouples for biological research. J Agrie Res (Washington DC) 72:341–355.

    CAS  Google Scholar 

  • Eidmann H (1922). Die Durchlässigkeit des Chitins bei osmotischen Vorgängen. Biol Zentralbl 42:429–435.

    CAS  Google Scholar 

  • Filshie BK (1976) The structure and deposition of the epicuticle of the adult female cattle tick (Boophilus microplus). In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam.

    Google Scholar 

  • Fraenkel G, Rudall KM (1940) A study of the physical and chemical properties of the insect cuticle. Proc R Soc London ser B 129:1–35.

    Article  CAS  Google Scholar 

  • Galbreath RA (1975) Water balance across the cuticle of a soil insect. J Exp Biol 62:115–120.

    PubMed  CAS  Google Scholar 

  • Gilby AR (1957) Studies of cuticular lipides of arthropods. III. The chemical composition of the wax from Boophilus microplus. Arch Biochem Biophys 67:320–324.

    CAS  Google Scholar 

  • Gilby AR, Alexander AE (1957) Studies of cuticular lipides of arthropods. I. The influence of biological factors on the composition of the wax from Ceroplastes destructor. Arch Biochem Biophys 67:302–306.

    CAS  Google Scholar 

  • Guney M (1969) Laboratory apparatus for maintaining constant humidity. Lab Pract 18:161–163, 170.

    Google Scholar 

  • Gupta BL, Hall TA, Maddrell SHP, Moreton, RB (1976) Distribution of ions in a fluid-transporting epithelium determined by electron-probe X-ray microanal-ysis. Nature 264:284–287.

    Article  PubMed  CAS  Google Scholar 

  • Gupta BL, Berridge MJ, Hall TA, Moreton RB (1978) Electron microprobe and ion-selective microelectrode studies of fluid secretion in the salivary glands of Calliphora. J Exp Biol 72:261–284.

    PubMed  CAS  Google Scholar 

  • Hackman RH (1971) The integument of Arthropoda. In: Florkin M, Scheer BT (eds). Chemical Zoology, Vol. VI, B, Academic Press, New York.

    Google Scholar 

  • Hackman RH (1974) Chemistry of the insect cuticle. In: Rockstein M (ed) The physiology of Insecta, 2nd edn, Vol. VI. Academic Press, New York.

    Google Scholar 

  • Hackman RH (1975) Expanding abdominal cuticle in the bug Rhodnius and the tick Boophilus. J Insect Physiol 21:1613–1623.

    Article  PubMed  CAS  Google Scholar 

  • Hadley NF (1970) Water relations of the desert scorpion, Hadrurus arizonensis. J Exp Biol 53:547–558.

    PubMed  CAS  Google Scholar 

  • Hadley NF (1977) Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: Seasonal and acclimatory effects on composition. Insect Biochem 7:277–283.

    Article  CAS  Google Scholar 

  • Hadley NF (1978a) Cuticular permeability of desert tenebrionid beetles: correlations with epicuticular hydrocarbon composition. Insect Biochem 8:17–22.

    Article  CAS  Google Scholar 

  • Hadley NF (1978b) Cuticular permeability and lipid composition of the black widow spider, Latrodectus Hesperus. Symp Zool Soc London 42:429–438.

    Google Scholar 

  • Hadley NF, Jackson LL (1977) Chemical composition of the epicuticular lipids of the scorpion, Paruroctonus mesaensis. Insect Biochem 7:85–89.

    Article  CAS  Google Scholar 

  • Hamilton WJ III (1973) Life’s color code. McGraw-Hill, New York.

    Google Scholar 

  • Hamilton WJ, Seely MK (1976) Fog basking by the Namib Desert beetle, Onymacris unguicularis. Nature 262:284–285.

    Article  Google Scholar 

  • Hinton HE (1977) Function of shell structures of pig louse and how egg maintains a low equilibrium temperature in direct sunlight. J Insect Physiol 23:785–800.

    Article  PubMed  CAS  Google Scholar 

  • Hinton HE, Jarman GH (1973) Physiological colour change in the elytra of the Hercules beetle, Dynastes hercules. J Insect Physiol 19:533–549.

    Article  Google Scholar 

  • Holdgate MW (1955) The wetting of insect cuticles by water. J Exp Biol 32:591–617.

    CAS  Google Scholar 

  • Holdgate MW (1956) Transpiration through the cuticles of some aquatic insects. J Exp Biol 33:107–118.

    CAS  Google Scholar 

  • Honeyman J (ed) (1959) Advances in the chemistry of cellulose and starch. Academic Press, London, New York.

    Google Scholar 

  • Houlihan DF (1976) Water transport by the eversible abdominal vesicles of Pet-robius brevistylis. J Insect Physiol 22:1683–1695.

    Article  CAS  Google Scholar 

  • Houlihan DF (1977) Increased oxygen consumption during the uptake of water by the eversible vesicles of Petrobius brevistylis. J Insect Physiol 23:1285–1294.

    Article  CAS  Google Scholar 

  • Hurst H (1948) Interaction of water and porous materials. III Zoological aspects. Assymmetrical behaviour of insect cuticle in relation to water permeability. Disc Faraday Soc 3:193–210.

    Google Scholar 

  • Jakovlev V (1957) Der Wasserhaushalt der Insekten: Eine neue Untersuchungsmethode gibt wertvolle Einblicke. Umschau Wiss Tech 10:303–305.

    Google Scholar 

  • Jakovlev V (1959) Der Ort der Transpiration bei Locusta migratoria R. & F. (Orth., Ins.). Zool Anz (Suppl) 22:111–114

    Google Scholar 

  • Jakovlev V, Krìger F (1953) Vergleichende Untersuchungen zur Physiologie der Transpiration der Orthopteren. Zool Jahrb Abt Allg Zool Physiol Tiere 64:391–428.

    Google Scholar 

  • Jeffries R (1963) Sorption of water by cellulose. In: Whistler RL (ed) Methods in carbohydrate chemistry: Vol III, Cellulose. Academic Press, New York, London.

    Google Scholar 

  • Johnstone DR (1972) A differential thermistor thermometer for measuring temperature gradients in the vicinity of the ground. East Afr Agric For J 37:300–307.

    Google Scholar 

  • Jones GDG (1955) The cuticular waterproofing mechanism of the worker honeybee. JExp Biol 32:95–109.

    CAS  Google Scholar 

  • Jones JC (1977) The circulatory system of insects. Charles C Thomas, Springfield, Illinois.

    Google Scholar 

  • Kalmus H (1941a) Physiology and ecology of cuticle colour in insects. Nature 148:428–431.

    Article  Google Scholar 

  • Kalmus H (1941b) The resistance to desiccation of Drosophila mutants affecting body colour. Proc R Soc London Ser B 130:185–201.

    Article  Google Scholar 

  • Kanungo K (1963) A simple microbalance. Adv Acarol 1:169–173.

    Google Scholar 

  • King G (1945) Permeability of keratin to water vapour. Trans Faraday Soc 41:479–487.

    Article  CAS  Google Scholar 

  • Knowlton AE (ed) (1957) Standard handbook for electrical engineers, 9th edn. McGraw-Hill, New York.

    Google Scholar 

  • Knülle W, Devine TL (1972) Evidence for active and passive components of sorption of atmospheric water vapour by larvae of the tick Dermacentor variabilis. J Insect Physiol 18:1653–1664.

    Article  PubMed  Google Scholar 

  • Koch CJ (1976) Diode or transistor makes fully linear thermometer. Electronics May 13, 1976, 110–112.

    Google Scholar 

  • Koidsumi K (1934) Experimentelle Studien über die Transpiration und den Wärmehaushalt bei Insekten. I. Allgemeine Nachweise und quantitative Bestimmungen der Tierischen Transpiration. Mem Fac Sci Agrie Taihoku ImpUniv 12:1–19.

    Google Scholar 

  • Krogh A, Weis-Fogh T (1951) The respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J Exp Biol 28:344–357.

    CAS  Google Scholar 

  • Krysan JL (1976) Moisture relationships of the egg of the Southern corn rootworm, Diabrotica unidecimpunctata howardi (Coleoptera: Chrysomeli-dae). Entomol Exp Appl 20:154–162.

    Article  Google Scholar 

  • Kühnelt W (1928) Über den Bau des Insektenskelettes. Zool Jahrb Abt Anat Ontog Tiere 50:219–278.

    Google Scholar 

  • Lafon M (1943) Recherches biochimiques et physiologiques sur le squelette tégumentaire des arthropodes. Ann Sci Nat Zool Biol Anim Ser II, 5:113–146.

    Google Scholar 

  • Lamb KP (1963) Water loss from aphids at moderate temperatures. J Insect Physiol 9:703–711.

    Article  Google Scholar 

  • Langmuir I, Schaefer VJ (1943) Rates of evaporation of water through compressed monolayers on water. J Franklin Inst 235:119–162.

    Article  CAS  Google Scholar 

  • Lees AD (1946) The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37:1–20.

    CAS  Google Scholar 

  • Lees AD (1947) Transpiration and the structure of the epicuticle in ticks. J Exp Biol 23:379–410.

    PubMed  CAS  Google Scholar 

  • Lees AD, Beament JWL (1948) An egg-waxing organ in ticks. Q J Microsc Sci 89:291–332.

    PubMed  CAS  Google Scholar 

  • Leighly J (1937) A note on evaporation. Ecology 18:180–198.

    Article  Google Scholar 

  • Lindqvist OV (1968) Water regulation in terrestrial isopods, with comments on their behavior in a stimulus gradient. Ann Zool Fenn 5:279–311.

    Google Scholar 

  • Lindqvist OV (1971) Evaporation in terrestrial isopods is determined by oral and anal discharge. Experientia 27:1496–1498.

    Article  Google Scholar 

  • Lindqvist OV, Salminen I, Winston PW (1972) Water content and water activity in the cuticle of terrestrial isopods. J Exp Biol 56:49–55.

    Google Scholar 

  • Locke M (1964) The structure and formation of the integument in insects. In: Rockstein M (ed) Physiology of Insecta, Vol III. Academic Press New York, London.

    Google Scholar 

  • Locke M (1965) Permeability of insect cuticle to water and lipids. Science 147:295–298.

    Article  Google Scholar 

  • Lockey KH (1960) The thickness of some insect epicuticular wax layers. J Exp Biol 37:316–329.

    Google Scholar 

  • Lockey KH (1976) Cuticular hydrocarbons of Locusta, Schistocerca and Periplaneta and their role in waterproofing. Insect Biochem 6:457–472.

    Article  CAS  Google Scholar 

  • Lovegren NV, Feuge RO (1954) Food coatings. Permeability of acetostearin products to water vapor. J Agric Food Chem 2:558–563.

    CAS  Google Scholar 

  • Loveridge JP (1967) The water balance of Locusta. PhD dissertation, niversity of London.

    Google Scholar 

  • Loveridge JP (1968a) The control of water loss in Locusta migratoria migra-torioides R. & F. I. Cuticular water loss. J Exp Biol 49:1–13.

    Google Scholar 

  • Loveridge JP (1968b) The control of water loss in Locusta migratoria migra-torioides R. & F. II. Water loss through the spiracles. J Exp Biol 49:15–29.

    Google Scholar 

  • Loveridge JP (1975) Studies on the water relations of adult locusts—III. The water balance of non-flying locusts. Zool Afr 10:1–28.

    Google Scholar 

  • Loveridge JP, Crayé G (1979) Cocoon formation in two species of Southern African frogs. South Afr J Sci 75:18–20.

    Google Scholar 

  • Ludwig D, Anderson JM (1942) Effects of different humidities, at various temperatures, on the early development of four saturniid moths (Platysamia cecropia Linnaeus, Telea polyphemus Cramer, Samia walked Felder and Felder, Calosamia promethea Drury) and on the weights and water contents of their larvae. Ecology 23:259–274.

    Article  Google Scholar 

  • Machin J (1969) Passive water movements through skin of the toad Bufo marinus in air and in water. Am J Physiol 216: 1562–1568.

    PubMed  CAS  Google Scholar 

  • Machin J (1975) Water balance in Tenebrio molitor, L. larvae; the effect of atmospheric water absorption. J Comp Physiol 101:121–132.

    Google Scholar 

  • Machin J (1976) Passive exchanges during water vapour absorption in mealworms (Tenebrio molitor): A new approach to studying the phenomenon. J Exp Biol 65:603–615.

    PubMed  CAS  Google Scholar 

  • Machin J (1979) Atmospheric water absorption in arthropods. Adv Insect Physiol 14:1–48.

    Article  Google Scholar 

  • Maddrell SHP (1966) Nervous control of the mechanical properties of the abdominal wall at feeding in Rhodnius. J Exp Biol 44:59–68.

    PubMed  CAS  Google Scholar 

  • Madge DS (1961) The control of relative humidity with aqueous solutions of sodium hydroxide. Entomol Exp Appl 4:143–147.

    Article  CAS  Google Scholar 

  • Makings P (1968) Transpiration through the Slifer’s patches of Acrididae (Orthoptera). J Exp Biol 48:247–263.

    Google Scholar 

  • Mali JWH (1956) The transport of water through the human epidermis. J Invest Dermatol 27:451–469.

    PubMed  CAS  Google Scholar 

  • Manton SM, Ramsay JA (1937) Studies on the Onychophora’III. The control of water loss in Peripatopsis. J Exp Biol 14:470–472.

    Google Scholar 

  • Mayes KR, Holdich DM (1976) The water content of muscle and cuticle of the woodlouse Oniscus asellus in conditions of hydration and desiccation. Comp Biochem Physiol 53A:253–258.

    Article  Google Scholar 

  • McEnroe WD (1972) Equilibrium weights of Dermacentor variabilis Say. at near saturation (Acarina: Ixodidae). Acarologia 14:365–367.

    PubMed  CAS  Google Scholar 

  • McFarlane JE (1970) The permeability of the cricket egg shell. Comp Biochem Physiol 37:133–141.

    Article  Google Scholar 

  • McMullen HL, Sauer JR, Burton RL (1976) Possible role in uptake of water vapour of ixodid tick salivary glands. J Insect Physiol 22:1281–1285.

    Article  PubMed  CAS  Google Scholar 

  • Mead-Briggs AR (1956) The effect of temperature upon the permeability to water of arthropod cuticles. J Exp Biol 33:737–749.

    CAS  Google Scholar 

  • Mellanby K (1933) A simple hygrometer. Nature 132:66.

    Article  Google Scholar 

  • Murray FW (1967) On the computation of saturation vapor pressure. J Appl Me-teorol 6:203–204.

    Article  CAS  Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin.

    Google Scholar 

  • Noble-Nesbitt J (1963) A site of water and ionic exchange with the medium in Podura aquatica L. (Collembola, Isotomidae). J Exp Biol 40:701–711.

    CAS  Google Scholar 

  • Noble-Nesbitt J (1967) Aspects of the structure, formation and function of some insect cuticles. In: Beament JWL, Treherne JE (eds) Insects and physiology. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Noble-Nesbitt J (1970a) Water uptake from subsaturated atmospheres: its site in insects. Nature 225:753–754.

    Article  PubMed  CAS  Google Scholar 

  • Noble-Nesbitt J (1970b) Water balance in the firebrat, Thermobia domestica (Packard). The site of water uptake from the atmosphere. J Exp Biol 52:193–200

    Google Scholar 

  • Noble-Nesbitt J (1975) Reversible arrest of uptake of water from subsaturated atmospheres by the firebrat, Thermobia domestica (Packard). J Exp Biol 62:657–669.

    Google Scholar 

  • Noirot C, Noirot-Timothée C, Smith DS, Cayer ML (1978) Cryofracture de la cuticule des insectes: Mise en évidence d’un plan de clivage dans l’épicuticle externe; implications structurales et fonctionelles. C R Acad Sci Ser D 287:503–505.

    Google Scholar 

  • Nopp H (1964) Melanine und ihre Rolle im tierischen Organismus. Verh Zool Bot Ges Wien 103/104:16–54.

    CAS  Google Scholar 

  • Norton HN (1969) Handbook of transducers for electronic measuring systems. Prentice Hall, Englewood-Cliffs NJ.

    Google Scholar 

  • Nutman SR (1941) Function of the ventral tube in Onychiurus armatus (Collembola). Nature 148:168–169.

    Article  Google Scholar 

  • O’Donnell MJ (1977a) Site of water vapor absorption in the desert cockroach, Arenivaga investigata. Proc Natl Acad Sci 74:1757–1760.

    Article  PubMed  Google Scholar 

  • O’Donnell MJ (1977b) Hypopharyngeal bladders and frontal glands: novel structures involved in water vapor absorption in the desert cockroach, Arenivaga investigata. Am Zool 17:234.

    Google Scholar 

  • O’Donnell MJ (1978) The site of water vapour absorption in Arenivaga investigata. In: Schmidt-Nielsen K, Bolis L, Maddrell SHP (eds) Comparative physiology—water, ions and fluid mechanics. Cambridge University press, London and New York..

    Google Scholar 

  • Phillips JE, Dockrill AA (1968) Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria). J Exp Biol 48:521–532.

    PubMed  CAS  Google Scholar 

  • Ramsay JA (1935a) Methods of measuring the evaporation of water from animals. J Exp Biol 12:355–372.

    Google Scholar 

  • Ramsay JA (1935b) The evaporation of water from the cockroach. J Exp Biol 12:373–383.

    Google Scholar 

  • Reynolds SE (1975) The mechanism of plasticization of the abdominal cuticle in Rhodnius. J Exp Biol 62:81–98.

    PubMed  CAS  Google Scholar 

  • Richards AG (1951) The integument of arthropods. University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Richards AG (1957) Studies on arthropod cuticle—XIII. The penetration of dissolved oxygen and electrolytes in relation to the multiple barriers of the epicuticle. J Insect Physiol 1:23–39.

    Article  CAS  Google Scholar 

  • Richards AG, Fan HY (1949) Studies on arthropod cuticle V. The variation in permeability of larval cuticles of the blowfly, Phormia regina. J Cell Comp Physiol 33:177–198.

    Article  CAS  Google Scholar 

  • Richards AG, Clausen MB, Smith MN (1953) Studies on arthropod cuticle. X. The asymmetrical penetration of water. J Cell Comp Physiol 42:395–4

    Article  CAS  Google Scholar 

  • Rudolph D, Knülle W (1974) Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249:84–85.

    Article  PubMed  CAS  Google Scholar 

  • Salminen I, Lindqvist OV (1972) Cuticular water content and the rate of evaporation in the terrestrial isopod, Porcellio scaber Latr. J Exp Biol 57:569–574.

    CAS  Google Scholar 

  • Scarr RWA (1960) Thermistor applications. Direct Current Dec. 1960.

    Google Scholar 

  • Schmidt-Nielsen K (1969) The neglected interface: the biology of water as a liquid gas system. Q Rev Biophys 2:283–304.

    Article  PubMed  CAS  Google Scholar 

  • Schneider F (1948) Beitrag zur Kenntnis der Generationsverhältnisse und Diapause räuberischer Schwebfliegen (Syrphidae, Dipt.). Mitt Schweiz En-tomol Ges 21:249–285.

    Google Scholar 

  • Simanton WA (1933) Determination of the surface area of insects. Ann En-tomol Soc Am 26:247–254.

    Google Scholar 

  • Slatyer RO, Bierhuizen JF (1964) A differential psychrometer for continuous measurements of transpiration. Plant Physiol 39:1051–1056.

    Article  PubMed  CAS  Google Scholar 

  • Slifer EH (1951) Some unusual structures in Locusta migratoria migratorioides and their probable function as thermoreceptors. Proc R Soc London Ser B 138:414–437.

    Article  Google Scholar 

  • Slifer EH (1954a) The permeability of the sensory pegs on the antennae of the grasshopper. Biol Bull Woods Hole 106:118–128.

    Article  Google Scholar 

  • Slifer EH (1954b) A method for calculating the surface area of the body of grasshoppers and locusts. Ann Entomol Soc Am 47:265–271.

    Google Scholar 

  • Solomon ME (1945) The use of cobalt salts as indicators of humidity and moisture. Ann Biol 32:75–85.

    Article  CAS  Google Scholar 

  • Solomon ME (1951) Control of humidity with potassium hydroxide, sulphuric acid or other solutions. Bull Entomol Res 42:543–554.

    Article  CAS  Google Scholar 

  • Solomon ME (1957) Estimation of humidity with cobalt thiocyanate papers and permanent colour standards. Bull Entomol Res 48:489–506.

    Article  CAS  Google Scholar 

  • Solomon ME (1966) Moisture gains, losses and equilibria of flour mites, Acarus siro L. in comparison with larger arthropods. Entomol Exp Appl 9:25–41.

    Google Scholar 

  • Spruit D (1967) Measurement of the water vapor loss from human skin by a thermal conductivity cell. J Appl Physiol 23:994–997.

    PubMed  CAS  Google Scholar 

  • Spruit D (1969) The measurement and the regeneration of the water vapor loss of human skin. PhD dissertation, University of Nijmegen.

    Google Scholar 

  • Spruit D, Malten KE (1966) The regeneration rate of the water vapour loss of heavily damaged skin. Dermatologica 132:115–123.

    Article  PubMed  CAS  Google Scholar 

  • Stewart DM, Martin AW (1970) Blood and fluid balance of the common tarantula, Dugesiella hentzi. Z Vgl Physiol 70:223–246.

    Article  Google Scholar 

  • Stewart TC, Woodring JP (1973) Anatomical and physiological studies of water balance in the millipedes, Pachydesmus crassicutis (Polydesmida) and Orthoporus texicolens (Spirobolida). Comp Biochem Physiol 44A:735–750.

    Article  Google Scholar 

  • Tiegs OW (1947) The development and affinities of the Pauropoda, based on a study of Pauropus silvaticus, II. Q J Microsc Sci 88:275–336.

    Google Scholar 

  • Toolson EC (1978) Diffusion of water through the arthropod cuticle: thermody-namic consideration of the transition phenomenon. J Thermal Biol 3:69–73.

    Article  Google Scholar 

  • Toolson EC, Hadley NF (1977) Cuticular permeability and epicuticular lipid composition in two Arizona vejovid scorpions. Physiol Zool 50:323–330.

    CAS  Google Scholar 

  • Toolson EC, Hadley NF (1979) Seasonal effects on cuticular permeability and epicuticular lipid composition in Centmroides sculpturatus Ewing 1928 (Scorpiones: Buthidae). J Comp Physiol 129:319–325.

    CAS  Google Scholar 

  • Toolson EC, White TR, Glaunsinger WS (1979) Electron paramagnetic resonance spectroscopy of spin-labelled cuticle of Centmroides sculpturatus (Scorpiones: Buthidae): Correlation with thermal effects on cuticular permeability. J Insect Physiol 25:271–275.

    Article  CAS  Google Scholar 

  • Treherne JE, Willmer PG (1975a) Evidence for hormonal control of integumentary water loss in cockroaches. Nature 254:437–439.

    Article  PubMed  CAS  Google Scholar 

  • Treherne JE, Willmer PG (1975b) Hormonal control of integumentary water-loss: evidence for a novel neuroendocrine system in an insect (Periplaneta americana). J Exp Biol 63:143–159.

    PubMed  CAS  Google Scholar 

  • van Gasselt, HRM, Vierhout RR (1963) Registration of the insensible perspiration of small quantities of sweat. Dermatologica 127:255–259.

    Article  Google Scholar 

  • Vogel AI (1978) Textbook of quantitative inorganic analysis, 4th edn, Rev edn, by Bassetti, Denney RC, Jeffrey GH, Mendham J. Longman Green and Co. Ltd., London.

    Google Scholar 

  • Warburg MR (1965a) Water relation and internal body temperature of isopods from mesic and xeric habitats. Physiol Zool 38:99–109.

    Google Scholar 

  • Warburg MR (1965b) The evaporative water loss of three isopods from semi-arid habitats in South Australia. Crustaceana 9:302–308.

    Article  Google Scholar 

  • Weast RC (1970) Handbook of chemistry and physics, 51st edn. Chemical Rubber Co, Cleveland.

    Google Scholar 

  • Wharton GW, Richards AG (1978) Water vapor exchange kinetics in insects and acarines. Ann Rev Entomol 23:309–328.

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1945) Transpiration through the cuticle of insects. J Exp Biol 21:97–114.

    Google Scholar 

  • Wigglesworth VB (1959) The control of growth and form: A study of the epidermal cell in an insect. Cornell Univ. Press, Ithaca, NY.

    Google Scholar 

  • Wigglesworth VB (1976) The distribution of lipid in the cuticle of Rhodnius. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam.

    Google Scholar 

  • Willem V (1924) Observations sur Machilis maritima. Bull Biol France Belge 58:306–320.

    Google Scholar 

  • Winston PW (1967) Cuticular water pump in insects. Nature 214:383–384.

    Article  PubMed  CAS  Google Scholar 

  • Winston PW, Bates DH (1960) Saturated solutions for the control of humidity in biological research. Ecology 41:232–237.

    Article  Google Scholar 

  • Winston PW, Beament JWL (1969) An active reduction of water level in insect cuticle. J Exp Biol 50:541–546.

    PubMed  CAS  Google Scholar 

  • Winston PW, Nelson VE (1965) Regulation of transpiration in the clover mite Bryobia praetiosa Koch (Acarina: Tetranychidae). J Exp Biol 43:257–269.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Loveridge, J.P. (1980). Cuticular Water Relations Techniques. In: Miller, T.A. (eds) Cuticle Techniques in Arthropods. Springer Series in Experimental Entomology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6076-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6076-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6078-3

  • Online ISBN: 978-1-4612-6076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics