Prothoracicotropic Hormone

  • Hironori Ishizaki
  • Akinori Suzuki
Part of the Springer Series in Experimental Entomology book series (SSEXP)

Abstract

The endocrine function of the insect brain in the initiation of metamorphosis was first suggested by Kopeć as early as 1922 in the gypsy moth, Lymantria dispar. Years later, Wigglesworth (1940) clearly demonstrated that the molting of the bug Rhodnius prolixus was initiated by a hormonal factor that originated from the dorsal region of the protocerebrum containing neurosecretory cells. This brain hormone was then shown by Williams (1947, 1952) to induce molting by stimulating the prothoracic glands, which in turn secrete ecdysone in diapausing pupae of the saturniid Hylalophora cecropia. Thereafter followed numerous studies defining this hormone in a variety of insects, and it is now firmly established that the brain hormone ecdysone axis is ubiquitous in insects.

Keywords

Cellulose Acetone Urea Cobalt Sodium Chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agui N (1973) Quantitative bioassay of moulting hormone in vitro. Appl Entomol Zool 8:236–239.Google Scholar
  2. Agui N (1975) Activation of prothoracic glands by brains in vitro. J Insect Physiol 21:903–913.CrossRefGoogle Scholar
  3. Agui N, Yagi S, Fukaya M (1969). Induction of moulting of cultivated integuments taken from a diapausing rice stem borer larva in the presence of ec-dysterone (Lepidoptera: Pyralidae). Appl Entomol Zool 4:156–157.Google Scholar
  4. Agui N, Kimura Y, Fukaya M (1972) Action of the prothoracic gland on the insect integument in vitro. Appl Entomol Zool 7:71–78.Google Scholar
  5. Alexander NJ (1970) A regulatory mechanism of ecdysone release in Galleria mellonella. J Insect Physiol 16:271–276.CrossRefGoogle Scholar
  6. Baba Y, Arimura A, Schally AV (1971). Studies on the properties of hypothalamic luteinizing hormone-releasing hormone. J Biol Chem 246:7581–7585.PubMedGoogle Scholar
  7. Borst DW, O’Conner JD (1972). Arthropod molting hormone: radioimmune assay. Science 178:418–419.PubMedCrossRefGoogle Scholar
  8. Bounhiol JJ (1952a) L’achèvement de la métamorphose et la mue imaginale seraient commandés par la cerveau à la fin de la vie larvair chez Bombyx mori L. CR Acad Sci Paris 235:671–672.Google Scholar
  9. Bounhiol JJ (1952b) Nature probablement sécrétoire du facteur cérébral conditionnant la mue imaginale de Bombyx mori L. CR Acad Sci Paris 235:747–748.Google Scholar
  10. Doane WW (1973). Role of hormones in insect development. In: Counce SJ, Waddington CH (ed) Developmental systems: insects, Vol. 2. Academic, New York.Google Scholar
  11. Edwards JS (1966) Neural control of metamorphosis in Galleria mellonella (Lepidoptera). J Insect Physiol 12:1423–1433.PubMedCrossRefGoogle Scholar
  12. Fain MJ, Riddiford LM (1976) Reassessment of the critical periods for prothoracicotropic hormone and juvenile hormone secretion in the larval molt of the tobacco hornworm Manduca sexta. Gen Comp Endocrinol 30:131–141.PubMedCrossRefGoogle Scholar
  13. Fernlund P, Josefsson L (1972) Crustacean color change hormone: amino acid sequence and chemical synthesis. Science 177:173–175.PubMedCrossRefGoogle Scholar
  14. Fukuda S (1944) The hormonal mechanism of larval molting and metamorphosis in the silkworm. J Fac Sci Tokyo Imp Univ 6(4):477–532.Google Scholar
  15. Funatsu M, Green NM, Witkop B (1964) Differential oxidation of protein-bound tryptophan and tyrosine by N-bromosuccinimide in urea solution. J Am Chem Soc 86:1846–1848.CrossRefGoogle Scholar
  16. Gersch M, Stürzebecher J (1968) Weitere Untersuchungen zur Kennzeichnung des Aktivationshormons der Insektenhäutung. J Insect Physiol 14:87–96.CrossRefGoogle Scholar
  17. Gersch M, Stürzebecher J (1970) Experimentelle Stimulierung der zellulären Aktivität der Prothorakaldrüsen von Periplaneta americana durch den Aktiva-tionsfactor. J Insect Physiol 16:1813–1826.CrossRefGoogle Scholar
  18. Gibbs D, Riddiford LM (1973) Prothoracicotropic hormone in Manduca sexta: localization by a larval assay. J Exp Biol 66:255–266.Google Scholar
  19. Gorbman A, Bern H (1962) A textbook of comparative endocrinology. Wiley, New York.Google Scholar
  20. Herman WS (1967). The ecdysial glands of arthropods. Int Rev Cytol 22:269–347.PubMedCrossRefGoogle Scholar
  21. Highnam KC, Hill L (1969). The comparative endocrinology of the invertebrates. Edward Arnold, London.Google Scholar
  22. Hirs CHW, (1967). Methods in Enzymology, vol. 11, (CHW Hirs, ed.) 197 pp., Academic Press, New York.Google Scholar
  23. Hiruma K, Agui N (1977) Relationship between histological changes and functions of the neurosecretory cells in the brain of the cabbage armyworm, Mamestra brassicae L. Appl Entomol Zool 12:42–49.Google Scholar
  24. Ichikawa M, Ishizaki H (1963) Protein nature of the brain hormone of insects. Nature 198:308–309.CrossRefGoogle Scholar
  25. Ichikawa M, Nishiitsutsuji-Uwo J (1959) Studies on the role of the corpus allatum in the Eri-silkworm, Philosamia cynthia ricini. Biol Bull 116:88–94.CrossRefGoogle Scholar
  26. Ishizaki H (1969) Changes in titer of the brain hormone during development of the silkworm, Bombyx mori. Dev Growth Diff 11:1–7.CrossRefGoogle Scholar
  27. Ishizaki H (1972) Arrest of adult development in debrained pupae of the silkworm, Bombyx mori. J Insect Physiol 18:1621–1627.CrossRefGoogle Scholar
  28. Ishizaki H, Ichikawa M (1967). Purification of the brain hormone of the silkworm, Bombyx mori. Biol Bull 133:355–368.CrossRefGoogle Scholar
  29. Ishizaki H, Suzuki A, Isogai A, Nagasawa H, Tamura S (1978) Enzymatic and chemical inactivation of partially purified prothoracicotropic hormone of the silkworm, Bombyx mori. J Insect Physiol 23:1219–1222.CrossRefGoogle Scholar
  30. Isobe M, Hasegawa K, Goto T (1975) Further characterization of the silkworm diapause hormone A. J Insect Physiol 21:1917–1920.CrossRefGoogle Scholar
  31. Johnson B (1963) A histological study of neurosecretion in aphids. J Insect Physiol 9:727–739.CrossRefGoogle Scholar
  32. Kambysellis MP, Williams CM (1971a) In vitro development of insect tissues. I. A macromolecular factor prerequisite for silkworm spermatogenesis. Biol Bull 141:527–540.CrossRefGoogle Scholar
  33. Kambysellis MP, Williams CM (1971b) In vitro development of insect tissues. II. The role of ecdysone in the spermatogenesis of silkworms. Biol Bull 141:541–552.CrossRefGoogle Scholar
  34. Kirimura J, Saito M, Kobayashi M (1962) Steroid hormone in an insect Bombyx mori. Nature 195:4842.CrossRefGoogle Scholar
  35. Kobayashi M (1955) Relationship between the brain hormone and the imaginai differentiation of silkworm, Bombyx mori (in Japanese with English summary). J Sericult Sci Jpn 24:389–392.Google Scholar
  36. Kobayashi M (1957) Studies on the neurosecretion in the silkworm, Bombyx mori L. (in Japanese with English summary). Bull Sericult Exp Sta 15:181–273.Google Scholar
  37. Kobayashi M, Kirimura J (1953). The ‘brain’ hormone in the silkworm, Bombyx mori L. Nature 181:1217.CrossRefGoogle Scholar
  38. Kobayashi M, Yamashita Y (1958) Seasonal differences in the rates of the appearance of ‘Dauer-pupa’ in the silkworm, Bombyx mori L. (in Japanese with English summary). J Sericult Sci Jpn 27:93–98.Google Scholar
  39. Kobayashi M, Yamashita Y (1959) A function of corpus allatum in neurosecretory system in the silkworm, Bombyx mori (in Japanese with English summary). J Sericult Sci Jpn 28:335–339.Google Scholar
  40. Kobayashi M, Yamazaki M (1966) The proteinic brain hormone in an insect, Bombyx mori L. (Lepidoptera: Bombycidae). Appl Entomol Zool 1:53–60.Google Scholar
  41. Kobayashi M, Kirimura J, Saito M (1962) Crystallization of the ‘brain’ hormone of an insect. Nature 195:515–516.PubMedCrossRefGoogle Scholar
  42. Kobayashi M, Ishitoya Y, Yamazaki M (1968) Action of proteinic brain hormone to the prothoracic gland in an insect, Bombyx mori L. (Lepidoptera: Bom-bycidae). Appl Entomol Zool 3:150–152.Google Scholar
  43. Kono Y (1973) Light and electron microscopic studies on the neurosecretory control of diapause incidence in Pieris rapae crucivora. J Insect Physiol 19:255–272.CrossRefGoogle Scholar
  44. Kono Y (1975) Daily changes of neurosecretory type-II cell structure of Pieris larvae entrained by short and long days. J Insect Physiol 21:249–264.CrossRefGoogle Scholar
  45. Kopeć S (1922) Studies on the necessity of the brain for the inception of insect metamorphosis. Biol Bull 42:323–342.CrossRefGoogle Scholar
  46. Leslie J. Williams DL, Gorin G (1962) Determination of mercapto groups in proteins with N-ethylmaleimide. Anal Biochem 3:257–263.PubMedCrossRefGoogle Scholar
  47. Lowry O, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.PubMedGoogle Scholar
  48. Maddrell SHP (1963) Excretion in the blood-sucking bug, Rhodnius prolixus Stål. I. The control of diuresis. J Exp Biol 40:247–256.Google Scholar
  49. Maddrell SHP (1966) The site of release of the diuretic hormone in Rhodnius—a new neurohaemal system in insects. J Exp Biol 45:499–508.Google Scholar
  50. Maddrell SHP, Gee JD (1974) Potassium-induced release of the diuretic hormones of Rhodnius prolixus and Glossina austeni: Ca dependence, time course and localization of neurohaemal areas. J Exp Biol 61:155–171.PubMedGoogle Scholar
  51. McDaniel CN, Berey SJ (1967) Activation of the prothoracic glands of Antheraea polyphemus. Nature 214:1032–1034.CrossRefGoogle Scholar
  52. Morris GP, Steel CG H (1977) Sequence of ultrastructural changes induced by activation in the posterior neurosecretory cells in the brain of Rhodnius prolixus with special reference to the role of lysosome. Tissue Cell 9:547–562.PubMedCrossRefGoogle Scholar
  53. Nagasawa H, Isogai A, Suzuki A, Tamura S, Ishizaki H (1979) Purification and properties of the prothoracicotropic hormone of the silkworm, Bombyx mori. Dev Growth Diff 21:29–38.CrossRefGoogle Scholar
  54. Nijhout HF (1975) Axonal pathways in the brain-retrocerebral neuroendocrine complex of Manduca sexta (L.) (Lepidoptera: Sphingidae). Int J Insect Morphol Embryol 4:529–538.CrossRefGoogle Scholar
  55. Nijhout HF, Williams CM (1974) Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): Growth of the last-instar larva and the decision to pupate. J Exp Biol 61:481–491.PubMedGoogle Scholar
  56. Nishiitsutsuji-Uwo J (1961) A possible release of brain hormone from the perikaryon of neurosecretory cells in the Philosamia-silkworm. Membr Coll Sci Univ Kyoto Ser B 28:305–308.Google Scholar
  57. Nishiitsutsuji-Uwo J (1971) An insect brain hormone-activity from the mammalian tissues (in Japanese with English summary). Botyu-Kagaku 36:66–77.Google Scholar
  58. Nishiitsutsuji-Uwo J (1972) Purification and some properties of insect brain hormone extracted from silkworm heads. Botyu-Kagaku 37:93–102.Google Scholar
  59. Nishiitsutsuji-Uwo J, Nishimura MS (1972). Adult development induced by the injection of non-hormonal agents into brainless pupae of silkworms. Appl Entomol Zool 7:207–216.Google Scholar
  60. Novák VJA (1966) Insect hormones. Methuen, London.Google Scholar
  61. Oberlander H, Berry SJ, Krishnakumaran A, Schneiderman HA (1965) RNA and DNA synthesis during activation and secretion of the prothoracic glands of saturniid moths. J Exp Zool 159:15–32.PubMedCrossRefGoogle Scholar
  62. Pipa RL (1971) Neuroendocrine involvement in the delayed pupation of space-deprived Galleria mellonella (Lepidoptera). J Insect Physiol 17:2441–2450.PubMedCrossRefGoogle Scholar
  63. Pittendrigh CS (1965) On the mechanism of entrainment of a circadian rhythm by light cycles. In: Aschoff J (ed) Circadian clocks. North-Holland, Amsterdam.Google Scholar
  64. Rasenick MM, Neuburg M, Berry SJ (1976) Brain cyclic AMP levels and the initiation of adult development in the Cecropia silkmoth. J Insect Physiol 22:1453–1456.PubMedCrossRefGoogle Scholar
  65. Rasenick MM, Neuburg M, Berry SJ (1978) Cyclic nucleotide activation of the silkmoth brain. Cellular localization and further observations on the patterns of activation. J Insect Physiol 24:137–139.CrossRefGoogle Scholar
  66. Scharrer B (1952) Neurosecretion. XL The effects of nerve section on the inter-cerebralis-cardiacum-allatum system of the insect Leucophaea maderae. Biol Bull 102:261–272.CrossRefGoogle Scholar
  67. Scharrer B, Wurzelmann S (1978) Neurosecretion. XVII. Experimentally induced release of neurosecretory material by exocytosis in the insect Leucophaea maderae. Cell Tissue Res 190:173–180.PubMedCrossRefGoogle Scholar
  68. Schmidt EL, Williams CM (1953) Physiology of insect diapause. V. Assay of the growth and differentiation hormone of lepidoptera by the method of tissue culture. Biol Bull 105:174–187.CrossRefGoogle Scholar
  69. Sehnal F, Edwards JS (1969) Body constraint and developmental arrest in Galleria mellonella L: further studies. Biol Bull 137:352–357.CrossRefGoogle Scholar
  70. Skopik SD, Pittendrigh CS (1967) Circadian systems. II. The oscillation in the individual Drosophila pupa; its independence of developmental stage. Proc Natl Acad Sci USA 58:1862–1869.PubMedCrossRefGoogle Scholar
  71. Sondack DL, Light A (1971) Comparative studies of the modification of specific disulfide bonds of trypsinogen and chymotrypsinogen. J Biol Chem 246:1630–1637.PubMedGoogle Scholar
  72. Steel CGH (1977) The neurosecretory system in the aphid Megoura viciae, with reference to unusual features associated with long distance transport of neurosecretion. Gen Comp Endocrinol 31:307–322.PubMedCrossRefGoogle Scholar
  73. Steel CGH (1978) Some functions of identified neurosecretory cells in the brain of the aphid, Megoura viciae. Gen Comp Endocrinol 34:219–228.PubMedCrossRefGoogle Scholar
  74. Steel CGH, Harmsen R (1971) Dynamic of the neurosecretory system in the brain of an insect, Rhodnius prolixus, during growth and molting. Gen Comp Endocrinol 17:125–141.PubMedCrossRefGoogle Scholar
  75. Stone JV, Mordue W, Batley KE, Morris HR (1976) Structure of locust adipokinetic hormone, a neurohormone that regulates lipid utilization during flight. Nature 263:207–211.PubMedCrossRefGoogle Scholar
  76. Suzuki A, Isogai A, Horii T, Ishizaki H, Tamura S (1975) A simple procedure for partial purification of silkworm brain hormone. Agric Biol Chem 39:2157–2162.CrossRefGoogle Scholar
  77. Takeda N (1976) The direct release of neurosecretory material from the cell in the pars intercerebralis of Monema flavescens (Lipidoptera: Heterogeneidae). Appl Entomol Zool 11:143–153.Google Scholar
  78. Truman JW (1972) Physiology of insect rhythms. I. Circadian organization of the endocrine events underlying the moulting cycle of larval tobacco hornworms. J Exp Biol 57:805–820.Google Scholar
  79. Truman JW, Riddiford LM (1974) Physiology of insect rhythms. III. The temporal organization of the endocrine events underlying pupation of the tobacco hornworm. J Exp Biol 60:371–382.PubMedGoogle Scholar
  80. Truman JW, Riddiford LM, Safranek L (1973) Hormonal control of cuticle coloration in the tobacco hornworm, Manduca sexta: basis of an ultrasensitive bioassay for juvenile hormone. J Insect Physiol 19:195–203.CrossRefGoogle Scholar
  81. Vedeckis WV, Gilbert LI (1973) Production of cyclic AMP and adenosine by the brain and prothoracic glands of Manduca sexta. J Insect Physiol 19:2445–2457.PubMedCrossRefGoogle Scholar
  82. Wartón SS, Dutkowski AB (1977) Ultrastructure of the neurosecretory cells of pars intercerebralis of Galleria mellonella (Lepidoptera) after noradrenaline administration. Gen Comp Endocrinol 33:179–186.PubMedCrossRefGoogle Scholar
  83. Wartoń S, Dutkowski AB (1978) Ultrastructural analysis of the action of reser-pine on the brain neuroendocrine system of the wax moth, G alleria mellonella L., Lepidoptera. Cell Tissue Res 192:143–155.PubMedCrossRefGoogle Scholar
  84. Wigglesworth VB (1934) Physiology of ecdysis in Rhodnius prolixus (Hemi-ptera). J Microse Sci 77:191–222.Google Scholar
  85. Wigglesworth VB (1940) The determination of characters at metamorphosis in Rhodnius prolixus (Hemiptera). J Exp Biol 17:201–222.Google Scholar
  86. Wigglesworth VB (1964) The hormonal regulation of growth and reproduction in insects. Adv Insect Physiol 2:268–335.Google Scholar
  87. Williams CM (1946) Physiology of insect diapause: the role of the brain in the production and termination of pupal dormancy in the giant silkworm Pla-tysamia cecropia. Biol Bull 90:234–243.PubMedCrossRefGoogle Scholar
  88. Williams CM (1947) Physiology of insect diapause. II. Interaction between the pupal brain and prothoracic glands in the metamorphosis of the giant silkworm, Plaiysamia cecropia. Biol Bull 93:89–98.PubMedCrossRefGoogle Scholar
  89. Williams CM (1952) Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the cecropia silkworm. Biol Bull 103:120–238.CrossRefGoogle Scholar
  90. Williams CM (1956) Physiology of insect diapause. X. An endocrine mechanism for the influence of temperature on the diapausing pupa of the cecropia silkworm. Biol Bull 110:201–218.CrossRefGoogle Scholar
  91. Williams CM (1967) The present status of the brain hormone. In: Beament JWL, Treherne JE (ed) Insects and physiology. Oliver and Boyd, Edinburg.Google Scholar
  92. Williams CM (1968). Ecdysone and ecdysone-analogues: their assay and action on diapausing pupae of the Cynthia silkworm. Biol Bull 134:344–355.PubMedCrossRefGoogle Scholar
  93. Williams CM, Adkisson PL (1964) Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm, Antherea pernyi. Biol Bull 127:511–525.CrossRefGoogle Scholar
  94. Woolever P, Pipa RL (1970) Spatial and feeding requirements for pupation of last instar larvae of Galleria mellonella. J Insect Physiol 16:251–262.CrossRefGoogle Scholar
  95. Wyatt GR (1972) Insect hormones. In: Litwack G (ed), Biochemical actions of hormones, Vol. 2. Academic, New York.Google Scholar
  96. Yamazaki M, Kobayashi M (1969). Purification of the proteinic brain hormone of the silkworm, Bombyx mori. J Insect Physiol 15:1981–1990.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1980

Authors and Affiliations

  • Hironori Ishizaki
  • Akinori Suzuki

There are no affiliations available

Personalised recommendations