Potential Analytical Aspects of Laser Multiphoton Ionization Mass Spectrometry

  • D. A. Lichtin
  • L. Zandee
  • R. B. Bernstein
Part of the Contemporary Instrumentation and Analysis book series (CIA)


This article deals with possible analytical applications of a newly developed technique, laser ionization mass spectrometry. The instrument is a “laser mass spectrometer” (LAMS), whose essential new features consist of a pulsed, tunable-dye-laser ionization source and a gated-detection system for the mass-separated ions. Multiple photon ionization (MPI) spectra of isolated molecules are obtained via irradiation (by means of the pulsed, tunable laser) of a molecular beam traversing the ion-source region of a mass spectrometer. At each resonance in the vibronic MPI spectrum, a mass spectral fragmentation pattern can be recorded, yielding the branching fractions for the formation of the different ionic products. Such “two- dimensional” vibronic/ mass spectra are highly specific: every molecule (and each of its isotopic variants) has a unique MPI-mass spectrum. Ionization and fragmentation thresholds in the 10–20 eV range have been reached using readily available 2–3 eV laser photons. Thus the laser ionization mass spectrometer has many of the desirable atttributes of a far UV (e.g., synchrotron radiation) photoionization mass spectrometer, such as wavelength selectivity, but LAMS can provide higher peak photon flux densities and thereby access one-photon-forbidden intermediate states. Results on vibronic/ mass spectra of benzene and other polyatomic molecules are discussed. Consideration is given to such questions as the present practicality, ultimate sensitivity, and future analytical potential of laser ionization mass spectrometry.


Polyatomic Molecule Benzene Molecule Ionization Zone Appearance Potential Mass Spectral Fragmentation Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    a) P. M. Johnson, M. R. Berman, and D. Zakheim, J. Chem. Phys. 62, 2500 (1975); (b) P. M. Johnson, ibid. 62,4562 (1975); (c) 64,4143 (1976); (d) 64, 4638 (1976); (e) D. Zakheim and P. M. Johnson, ibid. 68, 3644 (1978).Google Scholar
  2. 2.
    a) G. Petty, C. Tai, and F. W. Dalby, Phys. Rev. Lett. 34, 1207 (1975); (b) F. W. Dalby, G. Petty-Sil, M. H. Pryce, and C. Tai, Can. J. Phys. 55,1033 (1977); (c) C. Tai and F. W. Dalby, ibid. 56, 183 (1978).Google Scholar
  3. a) D. H. Parker, S. J. Sheng, and M. A. El-Sayed, J. Chem. Phys. 65, 5534 (1976), (b) J. O. Berg, D. H. Parker, and M. A. El-Sayed, ibid. 68, 5561 (1978); (c) D. H. Parker and P. Avouris, Chem. Phys. Lett. 53,515 (1978); (d) D. H. Parker, J. O. Berg, and M. A. El-Sayed, in Advances in Laser Chemistry, A. H. Zewail, ed., Springer, Berlin, 1978; (e) R. E. Turner, V. Vaida, C. A. Molini, J. O. Berg, and D. H. Parker, Chem. Phys. 28, 47 (1978).Google Scholar
  4. 4.
    M. Kiewer, M. J. M. Beerlage, J. Los, and M. J. Van der Wiel, J. Phys. B 10, 2809 (1977).CrossRefGoogle Scholar
  5. 5.
    D. L. Feldman, R. K. Lengel, and R. N. Zare, Chem. Phys. Lett. 52, 413 (1977).CrossRefGoogle Scholar
  6. 6.
    a) A. Herrmann, S. Leutwyler, E. Schumacher, and L. Wöste, Chem. Phys. Lett. 52, 418 (1977); (b) Helv. Chim Acta 61, 543 (1978); (c) A. Herrmann, E. Schumacher, and L. Wöste, J. Chem. Phys. 68, 2327 (1978).Google Scholar
  7. 7.
    G. C. Nieman and S. D. Colson, J. Chem. Phys. 68, 5656 (1978).CrossRefGoogle Scholar
  8. 8.
    M. B. Robin and N. A. Kuebler, J. Chem. Phys. 69, 806 (1978).CrossRefGoogle Scholar
  9. 9.
    a) K. K. Lehmann, J. Smolarek, and L. Goodman, J. Chem. Phys. 69, 1569 (1978); (b) K. Krogh-Jesperson, R. P. Rava, and L. Goodman, Chem. Phys. Lett. 64, 413 (1979).Google Scholar
  10. 10.
    a) E. W. Rothe, B. P. Mathur, and G. P. Reck, Chem. Phys. Lett. 53,74 (1978); (b) B. P. Mathur, E. W. Rothe, G. P. Reck, and A. J. Lightman, ibid. 56, 336 (1978).Google Scholar
  11. 11.
    V. S. Antonov, I. N. Knyazev, V. S. Letokhov, V. M. Matiuk, V. G. Movshev, and V. K. Potapov, Opt. Lett. 3, 37 (1978).CrossRefGoogle Scholar
  12. 12.
    U. Boesl, H. J. Neusser, and E. W. Schlag, Z. Naturforsch., Teil A 33, 1546 (1978).Google Scholar
  13. 13.
    A. D. Williamson, R. N. Compton, and J. H. Eland, J. Chem. Phys. 70, 590 (1979).CrossRefGoogle Scholar
  14. 14.
    a) L. Zandee, R. B. Bernstein, and D. A. Lichtin, J. Chem. Phys. 69, 3427 (1978); (b) L. Zandee and R. B. Bernstein, ibid. 70, 2574 (1979).Google Scholar
  15. 15.
    L. Zandee and R. B. Bernstein, J. Chem. Phys. 71, 1359 (1979).CrossRefGoogle Scholar
  16. 16.
    S. D. Rockwood, J. Reilly, K. Hohla, and K. L. Kompa, Opt. Commun. 28, 175 (1979).CrossRefGoogle Scholar
  17. 17.
    D. M. Lubman, R. Naaman, and R. N. Zare, J. Chem. Phys. 72, 3034 (1980).CrossRefGoogle Scholar
  18. 18.
    R. G. Bray, R. M. Hochstrasser, and J. E. Wessel, Chem. Phys. Lett. 27, 167 (1974).CrossRefGoogle Scholar
  19. 19.
    R. E. Smalley, L. Wharton, and D. H. Levy, Acc. Chem. Res. 10, 139 (1977).CrossRefGoogle Scholar
  20. 20.
    M. G. Liverman, S. M. Beck, D. L. Monts, and R. E. Smalley, J. Chem. Phys. 70, 192 (1979).CrossRefGoogle Scholar
  21. 21.
    F. M. Behlen, N. Mikami, and S. A. Rice, Chem. Phys. Lett. 60, 364 (1979).CrossRefGoogle Scholar
  22. 22.
    D. A. Lichtin, S. Datta, K. R. Newton, and R. B. Bernstein, Chem. Phys. Lett. 75, 214 (1980).CrossRefGoogle Scholar
  23. 23.
    J. H. Brophy and C. T. Rettner, Chem. Phys. Lett. 67, 351 (1979).CrossRefGoogle Scholar
  24. 24.
    G. J. Fisanick, T. S. Eichelberger, B. A. Heath, and M. B. Robin, J. Chem. Phys. 72, 5571 (1980).CrossRefGoogle Scholar
  25. 25.
    V. S. Letokhov, Comments At. Mol. Phys. D7, 107 (1977) and refs, cited therein.Google Scholar
  26. 26.
    D. H. Parker and M. A. El-Sayed, Chem. Phys. 42, 379 (1979).CrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1981

Authors and Affiliations

  • D. A. Lichtin
    • 1
  • L. Zandee
    • 1
  • R. B. Bernstein
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations