Advertisement

New Laser-Based Methodologies for the Determination of Organic Pollutants via Fluorescence

  • Johnie C. Brown
  • John M. Hayes
  • Jonathan A. Warren
  • Gerald J. Small
Chapter
Part of the Contemporary Instrumentation and Analysis book series (CIA)

Abstract

One of today’s most important and challenging analytical problems is the development of selective, sensitive, and quantitative methodologies for the analysis of complex mixtures of organic pollutants. These pollutants derive from a variety of sources including chemical industry, agricultural land, and advanced energy technology. At present, the methods of choice for analysis of mixtures of organic pollutants are gas chromatography—mass spectrometry (GC—MS) and high-performance liquid chromatography (HPLC). Neither, however, is completely satisfactory. GC—MS, for example, often is unable to distinguish between geometric isomers. This is particularly troublesome in the determination of polycyclic aromatic hydrocarbons (PAHs), species whose mutagenic and carcinogenic properties depend strongly on isomeric structure and substitution (1). Such species are generated from coal, synthetic fuel, and shale oil.

Keywords

Water Glass Selective Excitation Organic Glass Vibronic Band Vibronic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Lea, M. Novotny, and K. D. Bartie, Anal. Chem. 48, 405 (1976), and references therein.CrossRefGoogle Scholar
  2. 2.
    F. P. Burke and G. J. Small, Chem. Phys. 5, 198 (1974).CrossRefGoogle Scholar
  3. 3.
    F. P. Burke and G. J. Small, J. Chem. Phys. 61, 4588 (1974).CrossRefGoogle Scholar
  4. 4.
    J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.Google Scholar
  5. 5.
    See Y. Kalisky, R. Reisfeld, and Y. Haas, Chem. Phys. Lett. 61, 19 (1979), and references therein.CrossRefGoogle Scholar
  6. 6.
    P. Avouris, W. M. Gelbart, and M. A. El-Sayed, Chem. Rev. 77, 793 (1977).CrossRefGoogle Scholar
  7. 7.
    A. Szabo, Phys. Rev. Lett. 27, 323 (1971) and 25, 924 (1970).CrossRefGoogle Scholar
  8. 8.
    R. I. Personov, E. I. Al’Shits, and L. A. Bykovskaya, Opt. Commun. 6, 169 (1972).CrossRefGoogle Scholar
  9. 9.
    B. E. Kohler, “Site Selection Spectroscopy” in Chemical and Biochemical Applications of Lasers, Vol. IV, C. B. Moore, ed., Academic Press, New York, 1979.Google Scholar
  10. 10.
    J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).CrossRefGoogle Scholar
  11. 11.
    J. M. Hayes and G. J. Small, Chem. Phys. Lett. 54, 435 (1978).CrossRefGoogle Scholar
  12. 12.
    J. M. Hayes and G. J. Small, J. Lumin. 18/19, 219 (1979).CrossRefGoogle Scholar
  13. 13.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972).CrossRefGoogle Scholar
  14. 14.
    W. A. Philips, J. Low Temp. Phys. 7, 351 (1972).CrossRefGoogle Scholar
  15. 15.
    This can be used to advantage since it is technically quite difficult to observe the 0-0 band in fluorescence when excitation is into the 0–0 absorption band.Google Scholar
  16. 16.
    J. C. Brown, M. C. Edelson, and G. J. Small, Anal. Chem. 50, 1394 (1978).CrossRefGoogle Scholar
  17. 17.
    B. di Bartolo, Optical Interactions in Solids, Wiley, New York, 1968.Google Scholar
  18. 18.
    A. P. D’Silva, G. J. Oestreich, and V. A. Fassel, Anal. Chem. 48, 915 (1976).CrossRefGoogle Scholar
  19. 19.
    G. F. Kirkbright and C. G. de Lima, Analyst 99, 338 (1974).CrossRefGoogle Scholar
  20. 20.
    C. S. Woo, A. P. D’Silva, and V. A. Fassel, unpublished paper.Google Scholar
  21. 21.
    G. J. Oestreich, PhD Thesis, Iowa State University, Ames, Iowa, 1979.Google Scholar
  22. 22.
    A. Colmsjo and U. Stenberg, Anal. Chem. 51, 145 (1979).CrossRefGoogle Scholar
  23. 23.
    Y. Yang, V. A. Fassel, and A. P. D’Silva, unpublished work.Google Scholar
  24. 24.
    E. L. Wehry and G. Mamantov, Anal. Chem. 51, 643A (1979).CrossRefGoogle Scholar
  25. 25.
    R. B. Dickinson, Jr., and E. L. Wehry, Anal. Chem. 51, 779 (1979).CrossRefGoogle Scholar
  26. 26.
    L. A. Bykovskaya, R. I. Personov, and B. M. Kharlmov, Chem. Phys. Lett. 27, 80 (1974).CrossRefGoogle Scholar
  27. 27.
    J. Fiinfschilling and D. F. Williams, Photochem. Photobiol. 22, 151 (1975).CrossRefGoogle Scholar
  28. 28.
    J. C. Wright and F. J. Gustafson, Anal. Chem. 50, 1147A (1978).CrossRefGoogle Scholar
  29. 29.
    A. Kantrowitz and J. Grey, Rev. Sci. Instrum. 22, 328 (1951).CrossRefGoogle Scholar
  30. 30.
    R. E. Smalley, D. H. Levy, and L. Wharton, Jr., Chem. Phys. 64, 3266 (1976), and references therein.Google Scholar
  31. 31.
    D. H. Levy, L. Wharton, Jr. and R. E. Smalley, Chapter 1 in Chemical and Biochemical Applications of Lasers, Vol. II, C. B. Moore, ed., Academic Press, New York, 1977.Google Scholar
  32. 32.
    R. Campargue and A. Lebehot, Chapter 11 in Rarefied Gas Dynamics, M. Becker and M. Fiebig, eds., 2 (1974).Google Scholar
  33. 33.
    S. M. Beck, D. L. Monts, M. G. Liverman, and R. E. Smalley, J. Chem. Phys. 70, 1062 (1979).CrossRefGoogle Scholar
  34. 34.
    P. S. H. Fitch, L. Wharton, Jr., and D. H. Levy, J. Chem. Phys. 70, 2018 (1979); 69, 3424 (1978).CrossRefGoogle Scholar
  35. 35.
    M. G. Liverman, S. M. Beck, D. L. Monts, and R. E. Smalley, presented as contributed paper 171 at 11th International Symposium on Rarefied Gas Dynamics, Cannes, July 3–8, 1978.Google Scholar
  36. 36.
    J. H. Richardson and S. M. George, Anal. Chem. 50, 617 (1978).CrossRefGoogle Scholar
  37. 37.
    Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., Cleveland, 1961, p. 2524.Google Scholar
  38. 38.
    S. Fischer, Chem. Phys. Lett. 4, 333 (1969).CrossRefGoogle Scholar
  39. 39.
    S. Fischer and E. W. Schlag, Chem. Phys. Lett. 4, 393 (1969).CrossRefGoogle Scholar
  40. 40.
    M. Stockburger, C. Gattermann, and W. Klusman, J. Chem., Phys. 63, 4519 (1975).CrossRefGoogle Scholar
  41. 41.
    G. Fischer and A. E. W. Knight, Chem. Phys. 17, 327 (1976).CrossRefGoogle Scholar
  42. 42.
    A. E. W. Knight and C. S. Parmenter, Chem. Phys. Lett. 43, 399 (1976).CrossRefGoogle Scholar
  43. 43.
    S. Okajima and E. C. Lim. Chem. Phys. Lett. 37, 403 (1976).CrossRefGoogle Scholar
  44. 44.
    S. L. Shapiro, R. C. Hyer and A. J. Campillo, Phys. Rev. Lett. 33, 513 (1974).CrossRefGoogle Scholar
  45. 45.
    B. Stevens and E. Hatton, Mol. Phys. 3, 71 (1960).CrossRefGoogle Scholar
  46. 46.
    R. Williams and G. J. Goldsmith, J. Chem. Phys. 39, 2008 (1963).CrossRefGoogle Scholar
  47. 47.
    A. Amirav, U. Even, and J. Jortner, Chem. Phys. Lett. 71, 12 (1980).CrossRefGoogle Scholar
  48. 48.
    A. Amirav, U. Even, and J. Jortner, Chem. Phys. Lett. 69, 14 (1980).CrossRefGoogle Scholar
  49. 49.
    R. A. Coveleskie, D. A. Dolson, and C. S. Parmenter, J. Chem. Phys. 72, 5774 (1980).CrossRefGoogle Scholar
  50. 50.
    D. A. Dolson, C. S. Parmenter, and B. M. Stone, Fast Reactions in Energetic Systems, in press, May, 1980.Google Scholar
  51. 51.
    D. H. Levy, private communication.Google Scholar

Copyright information

© The HUMANA Press Inc. 1981

Authors and Affiliations

  • Johnie C. Brown
    • 1
  • John M. Hayes
    • 1
  • Jonathan A. Warren
    • 1
  • Gerald J. Small
    • 1
  1. 1.Ames Laboratory, USDOE, and Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations