Laser-Excited Matrix-Isolation Molecular Fluorescence Spectrometry

  • E. L. Wehry
  • Randy R. Gore
  • Richard B. DickinsonJr.
Part of the Contemporary Instrumentation and Analysis book series (CIA)


Although molecular fluorescence spectrometry is a well-established and widely utilized analytical technique, it has frequently proven difficult to apply it in such a way as to acquire reliable quantitative results for individual compounds in complex samples, unless extensive sample fractionation is included in the overall analytical scheme. Moreover, molecular fluorimetry has received little use as a qualitative or “fingerprinting” procedure, in spite of the existence of two spectra (excitation and emission) inherent in the photoluminescence phenomenon. Two principal reasons exist for this situation. First, the fluorescence spectra of most large molecules in liquid solution are broad and relatively featureless, as exemplified by the solution spectrum of a polycyclic aromatic hydrocarbon, Benz[a]anthracene, shown in Fig. 1. Thus, in mixtures of fluorophores, band overlaps and inner-filter effects are common and reliable quantitation therefore is difficult. Such spectra obviously are also of limited utility as fingerprints for individual molecules. Second, in fluid media, fluorescence quenching and intermolecular electronic energy transfer processes, proceeding both by collisional and “long-range” mechanisms (1), can be highly efficient. In a mixture of fluorescent molecules, the occurrence of such processes results in a dependence of the observed fluorescence intensity for any one compound upon the identities and concentrations of all other fluorescence quenchers or sensitizers present in the solution. Under these circumstance, the precise empirical relationship between the measured fluorescence intensity of a species and its concentration is unknown, and accurate quantitation is exceedingly difficult.


Polycyclic Aromatic Hydrocarbon Fluorescence Spectrum Solute Molecule Freeze Solution Matrix Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Lamola and N. J. Turro, Energy Transfer and Organic Photochemistry, Wiley, New York, 1969, p. 37 - 42.Google Scholar
  2. 2.
    C. A. Parker, Photoluminescence of Solutions, American Elsevier, New York, 1968, p. 379 - 386.Google Scholar
  3. 3.
    E. V. Shpolskii, Sov. Phys. Usp. 3, 372 (1960); 5,522 (1962); 6, 411 (1963).CrossRefGoogle Scholar
  4. 4.
    R. I. Personov and T. A. Teplitskaya, J. Anal. Chem. USSR. 20, 1176 (1965).Google Scholar
  5. 5.
    P. P. Dikun, N. D. Krasnitskaya, N. D. Gorelova, and I. A. Kalinina, J. Appl. Spectrosc. USSR 8, 254 (1968).CrossRefGoogle Scholar
  6. 6.
    G. F. Kirkbright and C. G. de Lima, Analyst 99, 338 (1974).CrossRefGoogle Scholar
  7. 7.
    T. Y. Gaevayaand A. Y. Khesina, J. Anal. Chem. USSR 29, 1913 (1974).Google Scholar
  8. 8.
    A. P. D’Silva, G. J. Oestreich, and V. A. Fassel, Anal. Chem. 48, 915 (1976).CrossRefGoogle Scholar
  9. 9.
    A. Colmsjö and U. Stenberg, Anal. Chem. 51, 145 (1979).CrossRefGoogle Scholar
  10. 10.
    R. A. Keller and D. E. Breen, Chem. Phys. 43, 2562 (1965).Google Scholar
  11. 11.
    R. J. Lukasiewicz and J. D. Windfordner, Talanta 19, 381 (1972).CrossRefGoogle Scholar
  12. 12.
    E. L. Wehry, Fluorescence News (American Instrument Co.) 8, 21 (1974).Google Scholar
  13. 13.
    E. Whittle, D. A. Dows, and G. C. Pimentel, J. Chem. Phys. 22, 1943 (1954).Google Scholar
  14. 14.
    I. Norman and G. Porter, Nature 174, 508 (1954).CrossRefGoogle Scholar
  15. 15.
    E. L. Wehry and G. Mamantov, Anal. Chem. 51, 643A (1979).CrossRefGoogle Scholar
  16. 16.
    R. C. Stroupe, P. Tokousbalides, R. B. Dickinson, Jr., E. L. Wehry, and G. Mamantov, Anal. Chem. 49, 701 (1977).CrossRefGoogle Scholar
  17. 17.
    P. Tokousbalides, E. R. Hinton, Jr., R. B. Dickinson,Jr., P. V. Bilotta, E. L. Wehry, and G. Mamantov, Anal. Chem. 50, 1189 (1978).Google Scholar
  18. 18.
    G. Mamantov, E. L. Wehry, R. R. Kemmerer, R. C. Stroupe, E. R. Hinton, and G. Goldstein, Adv. Chem. Ser. 170, 99 (1978).CrossRefGoogle Scholar
  19. 19.
    B. Meyer, Low Temperature Spectroscopy, American Elsevier, New York, 1971.Google Scholar
  20. 20.
    T. Hirschfeld, Appl. Spectrosc. 31, 245 (1977).CrossRefGoogle Scholar
  21. 21.
    T. G. Matthews and F. E. Lytle, Anal. Chem. 51, 583 (1979).CrossRefGoogle Scholar
  22. 22.
    C. M. O’Donnell, K. F. Harbaugh, R. P. Fisher, and J. D. Winefordner, Anal. Chem. 45, 609 (1973).CrossRefGoogle Scholar
  23. 23.
    R. M. Wilson and T. L. Miller, Anal. Chem. 47, 256 (1975).CrossRefGoogle Scholar
  24. 24.
    R. B. Dickinson, Jr., and E. L. Wehry, Anal. Chem. 51, 778 (1979).CrossRefGoogle Scholar
  25. 25.
    J. M. Harris, R. W. Chrisman, F. E. Lytle, and R. S. Tobias, Anal. Chem. 48, 1937 (1976).CrossRefGoogle Scholar
  26. 26.
    W. H. Woodruff and S. Farquharson, Anal. Chem. 50, 1389 (1978).CrossRefGoogle Scholar
  27. 27.
    F. E. Lytle, Anal. Chem. 46, 545A, 817A (1974).CrossRefGoogle Scholar
  28. 28.
    D. V. O’Connor, W. R. Ware, and J. C. Andre, Phys. Chem. 83, 1333 (1979).CrossRefGoogle Scholar
  29. 29.
    C. K. Chan and S. O. Sari, Appl. Phys. Lett. 25, 403 (1974).CrossRefGoogle Scholar
  30. 30.
    J. M. Harris, R. W. Chrisman, and F. E. Lytle, Appl. Phys. Lett. 26, 16 (1975).CrossRefGoogle Scholar
  31. 31.
    J. M. Harris, L. M. Gray, M. J. Pelletier, and F. E. Lytle, Mol. Photochem. 8, 161 (1977).Google Scholar
  32. 32.
    Z. D. Popovic and E. R. Menzel, Chem. Phys. Lett. 45, 537 (1977).CrossRefGoogle Scholar
  33. 33.
    J. M. Ramsey, G. M. Hieftje, and G. R. Haugen, Appl. Opt. 18, 1913 (1979).CrossRefGoogle Scholar
  34. 34.
    C. C. Dorsey, M. J. Pelletier, and J. M. Harris, Rev. Sci. Instrum. 50, 333 (1979).CrossRefGoogle Scholar
  35. 35.
    K. K. Rebane, Impurity Spectra of Solids, Plenum, New York, 1970, p. 35.Google Scholar
  36. 36.
    J. L. Richards and S. A. Rice, J. Chem. Phys. 54, 2014 (1971).CrossRefGoogle Scholar
  37. 37.
    J. J. Dekkers, G. P. Hoornweg, G. Visser, C. Maclean, and N. H. Velthorst, Chem. Phys. Lett. 47, 357 (1977).CrossRefGoogle Scholar
  38. 38.
    C. Pfister, Chem. Phys. 2, 171 (1973).CrossRefGoogle Scholar
  39. 39.
    A. M. Merle, M. Lamotte, S. Risemberg, C. Hauw, J. Gaultier, and J. P. Grivet, Chem. Phys. Lett. 22, 207 (1977).Google Scholar
  40. 40.
    A. M. Merle, M. F. Nicol, and M. A. El-Sayed, Chem. Phys. Lett. 59, 386 (1978).CrossRefGoogle Scholar
  41. 41.
    V. I. Mikhailenko, Y. R. Redkin, and V. P. Grosul, Opt. Spectrosc. 39, 50 (1975).Google Scholar
  42. 42.
    P. Tokousbalides, E. L. Wehry, and G. Mamantov, J. Phys. Chem. 81, 1769 (1977).CrossRefGoogle Scholar
  43. 43.
    J. R. Maple, E. L. Wehry, and G. Mamantov, Anal. Chem., 52, 920 (1980).CrossRefGoogle Scholar
  44. 44.
    W. C. McColgin, A. P. Marchetti, and J. H. Eberly, J. Am. Chem. Soc. 100, 5622 (1978).CrossRefGoogle Scholar
  45. 45.
    R. I. Personov, E. I. Al’shits, and L. A. Bykovskaya, Opt. Commun. 6, 169 (1972).CrossRefGoogle Scholar
  46. 46.
    I. Abram, R. A. Auerbach, R. R. Birge, B. E. Kohler, and J. M. Stevenson, J. Chem. Phys. 61, 3857 (1974).CrossRefGoogle Scholar
  47. 47.
    U. P. Wild, Chimia 30, 382 (1976).Google Scholar
  48. 48.
    J. M. Hayes and G. J. Small, Chem. Phys. Lett. 54, 435 (1978).CrossRefGoogle Scholar
  49. 49.
    G. Flatscher and J. Friedrich, Chem. Phys. Lett. 50, 32 (1977).CrossRefGoogle Scholar
  50. 50.
    T. B. Tamm and R. M. Saari, Chem. Phys. Lett. 30, 219 (1975).CrossRefGoogle Scholar
  51. 51.
    R. I. Personov and E. I. Al’shits, Chem. Phys. Lett. 33, 85 (1975).CrossRefGoogle Scholar
  52. 52.
    J. Fiinfschilling and D. F. Williams, Photochem. Photobiol. 26, 109 (1977).CrossRefGoogle Scholar
  53. 53.
    B. Dellinger, D. S. King, R. M. Hochstrasser, and A. B. Smith, III, J. Am. Chem. Soc. 99, 7138 (1977).CrossRefGoogle Scholar
  54. 54.
    J. C. Brown, M. C. Edelson, and G. J. Small, Anal. Chem. 50, 1394 (1978).CrossRefGoogle Scholar
  55. 55.
    K. Cunningham, J. M. Morris, J. Fiinfschilling, and D. F. Williams, Chem. Phys. Lett. 32, 581 (1975).CrossRefGoogle Scholar
  56. 56.
    I. I. Abram, R. A. Auerbach, R. R. Birge, B. E. Kohler, and J. M. Stevenson, J. Chem. Phys. 63, 2473 (1975).CrossRefGoogle Scholar
  57. 57.
    J. Fünfschilling and D. F. Williams, Appl. Spectrosc. 30, 443 (1976).CrossRefGoogle Scholar
  58. 58.
    G. Flatscher, K. Fritz, and J. Friedrich, Z. Naturforsch. 31A, 1220 (1976).Google Scholar
  59. 59.
    J. M. Hayes and G. J. Small, Chem. Phys. 27, 151 (1978).CrossRefGoogle Scholar
  60. 60.
    M. L. Lee and R. A. Hites, J. Am. Chem. Soc. 99, 2008 (1977).CrossRefGoogle Scholar
  61. 61.
    G. T. Reedy, S. Bourne, and P. T. Cunningham, Anal. Chem. 51, 1535 (1979).CrossRefGoogle Scholar
  62. 62.
    D. S. King and J. C. Stephenson, paper presented at Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Cleveland, Ohio, March 6, 1979, Abstract No. 261.Google Scholar
  63. 63.
    E. L. Wehry, G. Mamantov, D. M. Hembree, and J. R. Maple, in Polynuclear Aromatic Hydrocarbons: Chemistry and Biological Effects, A. Bjorseth and A. J. Dennis, ed., Battelle Press, Columbus, Ohio, 1980.Google Scholar
  64. 64.
    R. P. Cooney, T. Vo-Dinh, and J. D. Winefordner, Anal. Chim. Acta. 89, 9 (1977).CrossRefGoogle Scholar

Copyright information

© The HUMANA Press Inc. 1981

Authors and Affiliations

  • E. L. Wehry
    • 1
  • Randy R. Gore
    • 1
  • Richard B. DickinsonJr.
    • 1
  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations