Advertisement

Homogeneous Spaces from a Complex Analytic Viewpoint

  • A. T. Huckleberry
  • E. Oeljeklaus
Part of the Progress in Mathematics book series (PM, volume 14)

Abstract

Manifolds having many automorphisms play a fundamental role in geometry. If X is a compact complex manifold, then the group Aut(X) of holomorphic automorphisms of X is, when equipped with the compact-open topology, a complex Lie group. If G = Aut(X), then an orbit G(p) , p∈X, may be holomorphical ly identified with the quotient manifold G/H, where H := {g ∈ G|g(p) = p} is the isotropy group of the G-action at p. Thus, studying quotients G/H of a complex Lie group G by a closed subgroup H becomes relevant. A natural first step is to analyze the structure of compact homogeneous spaces X = G/H. In the early 1950’s, with development of Lie theory along with the theory of algebraic groups, a number of very sharp results were obtained by algebraic methods. The works of Borel (e.g., [10]), Goto [22], Tits [64] and Wang [67] are typical of this direction. Later, but still in an algebraic geometry spirit, many general methods were developed (e.g., see the papers of Hochschild, Mostow, Rosenlicht et al.).

Keywords

Homogeneous Space Algebraic Group Maximal Compact Subgroup Open Orbit Homogeneous Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahiezer, D.N., “Cohomology of compact complex homogeneous spaces,” Math. USSR, Sbornik 13, 285–296 (1971).CrossRefGoogle Scholar
  2. [2]
    Ahiezer, D.N., “Dense orbits with two ends,” Math. USSR, Izvestija 11, 293–307 (1977).CrossRefGoogle Scholar
  3. [3]
    Ahiezer, D.N., “Algebraic groups acting transitively in the complement of a homogeneous hypersurface,” Soviet Math. Dokl. 20, 278–281 (1979).Google Scholar
  4. [4]
    Akao, K., “On prehomogeneous compact Kähler manifolds,” Proc. Jap. Acad. 49, 483–485 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Barth, W., Oeljeklaus, E., “Über die Albanese-AbbiIdung einer fast homogenen Kähler-Mannigfaltigkeit,” Math, Ann. 211, 47–62 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Barth, W., Otte, M., “Über fast-uniforme Untergruppen komplexer Liegruppen and auflösbare komplexe Mannigfaltigkeiten,” Comm. Math. Helv. 44, 269–281 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Barth, W., Otte, M., “Invariante holomorphe Funktionen auf reduktiven Liegruppen,” Math. Ann. 201, 97–112 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Bialynicki-Birula, A., Hochschild, G., Mostow, G.D., “Extension of representations of algebraic linear groups,” Am. J. Math. 85, 131–144 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Blanchard, A., “Sur les variétés analytiques complexes,” Ann. Soi. Ec. Norm. Sup. 73, 157–202 (1956).MathSciNetzbMATHGoogle Scholar
  10. [10]
    Borel, A., “Kälhlerian coset spaces of semisimple Lie groups,” Proc. Nat. Acad. Sci. USA 40, 1147–1151 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Borel, A., “Les bouts des espaces homogènes de groupes de Lie,” Ann. of Math. 58, 443–457 (1953).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Borel, A., “Symmetric compact complex spaces,” Arch. Math. 33, 49–56 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Borel, A., Remmert, R., “Über kompakte homogene Kählersche Mannigfaltigkeiten,” Math. Ann. 145, 429–439 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Brenton, L., Morrow, J., “Compact i fications of (cn),” Trans. Am. Math. Soc. 246, 139–153 (1978).MathSciNetzbMATHGoogle Scholar
  15. [15]
    Burns, D., Shnider, S., “Spherical hypersurfaces in complex manifolds,” Inv. Math. 33, 223–246 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Carrell, J., Howard, A., Kosniowski, C., “Holomorphic vector fields on complex surfaces,” Math. Ann. 204, 73–81 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Chevalley, C. , Théorie des groupes de Lie, Hermann, Paris (1968).zbMATHGoogle Scholar
  18. [18]
    Freudenthal, H., “Über die Enden topologischer Räume und Gruppen,” Math. Z. 33, 692–713 (1931).MathSciNetCrossRefGoogle Scholar
  19. [19]
    Gilligan, B., “Ends of complex homogeneous manifolds having non-constant holomorphic functions”(to appear).Google Scholar
  20. [20]
    Gilligan, B., Huckleberry, A., “On non-compact complex nil-manifolds,” Math. Ann. 238, 39–49 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Gilligan, B., Huckleberry, A., “Complex homogeneous manifolds with two ends,” Mich. J. Math, (to appear).Google Scholar
  22. [22]
    Goto, M., “On algebraic homogeneous spaces,” Am. J. Math. 76, 811–818 (1954) .MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Grauert, H., “Analytische Faserungen über holomorph-vollständigen Räumen,” Math. Ann. 135, 263–273 (1958).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    Grauert, H., “Bemerkenswerte pseudokonvexe Mannigfaltigkeiten,” Math. Z. 81, 377–391 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Grauert, H., Remmert, R., “Über kompakte homogene komplexe Mannigfaltigkeiten,”. Math. 13, 498–507 (1962z).MathSciNetzbMATHGoogle Scholar
  26. [26]
    Hano, J., Matsushima, Y., “Some studies on Kählerian homogeneous spaces,” Nagoya Math. J. 11, 77”92 (1957).MathSciNetzbMATHGoogle Scholar
  27. [27]
    Harish-Chandra, “Representations of a semi-simple Lie group on a Banach space,” Trans. AMS 70, 28–96 (1953).MathSciNetCrossRefGoogle Scholar
  28. [28]
    Hochschild, G., Mostow, G.D., “Representations and representative functions of Lie groups,” Ann. of Math. 66, 495–542 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Hochschild, G., Mostow, G.D., “Representations and representative functions of Lie groups, III,” Ann. of Math. 70, 85–100 (1959).MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    Hochschild, G., Mostow, G.D., “Affine embeddings of complex analytic homogeneous spaces,” Am. J. Math. 87, 807–839 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    Huckleberry, A., Livorni, L., “A classification of complex homogeneous surfaces,” Can. J. Math, (to appear).Google Scholar
  32. [32]
    Huckleberry, A., Oeljeklaus, E., “A characterization of complex homogeneous cones,” Math. Z. 170, l8l-194 (1980).MathSciNetCrossRefGoogle Scholar
  33. [33]
    Huckleberry, A., Oeljeklaus, E., “Sur les espaces analytiques complexes presque homogènes,” C.R. Acad. Sc. Paris, Serie A., 447–448 (1980) .Google Scholar
  34. [34]
    Huckleberry, A., Snow, D., “Pseudoconcave homogeneous manifolds,” Ann. Scuola Norm. Sup. Pisa, Serie IV, Vol. VII, 29–54 (1980).Google Scholar
  35. [35]
    Huckleberry, A., Snow, D., “A classification of strictly pseudo-concave homogeneous manifolds,” Ann. Scuola Norm. Sup. Pisa (to appear) .Google Scholar
  36. [36]
    Huckleberry, A., Snow, D., “Almost-homogeneous Kahler manifolds with hypersurface orbits” (to appear).Google Scholar
  37. [37]
    Malcev, A.J., “On a class of homogeneous spaces,” AMS Trans. 39 (1951).Google Scholar
  38. [38]
    Matsumura, H., “On algebraic groups of birational transformation,” Rend. Acad. Naz. Lincei, Ser. VII, 34, 151–155 (1963).MathSciNetzbMATHGoogle Scholar
  39. [39]
    Matsushima, Y., “Sur les espaces homogènes kähleriens d’un groupe de Lie reductif,” Nagoya Math. J. 11, 53–60 (1957).MathSciNetzbMATHGoogle Scholar
  40. [40]
    Matsushima, Y., “Espaces homogènes de Stein des groupes de Lie complexes I,” Nagoya Math. J. 16, 205–218 (1960).MathSciNetzbMATHGoogle Scholar
  41. [41]
    Matsushima, Y., “Sur certains variétés homogènes complexes,” Nagoya Math. J. 18, 1–12 (1960).MathSciNetGoogle Scholar
  42. [42]
    Matsushima, Y., “Espaces homogènes de Stein des groupes de Lie complexes II,” Nagoya Math. J. 18, 153–164 (1961).MathSciNetzbMATHGoogle Scholar
  43. [43]
    Matsushima, Y., Morimoto, A., “Sur certains espaces fibres holomorphes sur une variété de Stein,” Bull. Soc. Math. France 88, 137–155 (1960).MathSciNetzbMATHGoogle Scholar
  44. [44]
    Montgomery, D., “Simply connected homogeneous spaces,” Proc. Am. Math. Soc. 1, 467–469 (1950).zbMATHCrossRefGoogle Scholar
  45. [45]
    Morimoto, A., “Non-compact complex Lie groups without non-constant holomorphic functions,” Proc. of the Conf. on Complex Analysis, Minneapolis 1964, 256–272.Google Scholar
  46. [46]
    Morimoto, A., “On the classification of non-compact abelian Lie groups,” Trans. AMS 123, 200–228 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    Morimoto, Y., Nagano, T., “On pseudo-conformal transformations of hypersurfaces,” J. Math. Soc. Japan 14, 289–300 (1963).MathSciNetCrossRefGoogle Scholar
  48. [48]
    Mostow, G.D., “On covariant fiberings of Klein spaces,” Am. J. Math. 77, 247–278 (1955).MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    Mostow, G.D., “Some applications of representative functions to solv-manifolds,” Am. J. Math. 93, 11–32 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    Mostow, G.D., “Factor spaces of solvable groups,” Ann. of Math. 60, 1–27 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    Oeljeklaus, E.,”Über fast homogene kompakte komplexe Mannigfaltigkeiten,” Sohritenr. Math. Inst. Univ. MÜnster, 2. Serie, Bd. 1 (1970).Google Scholar
  52. [52]
    Oeljeklaus, E., “Ein Hebbarkeitssatz fÜr Automorph ismengruppen kompakter komplexer Mannigfaltigkeiten,” Math. Ann. 190, 154–166 (1970).MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    Oeljeklaus, E., “Fast homogene Kählermannigfaltigkeiten mit verschwindender erster Bettizahl,” Manuskr. Math. 7, 175–183 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    Potters, J., “On almost homogeneous compact complex surfaces,” Inv. Math. 8, 244–266 (1969).MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    Remmert, R., van de Ven, T., “Zwei Sätze Über die komplex-projek-tive Ebene,” Nieuw. Arch. Wisk. (3), 8, 147–157 (1960).MathSciNetzbMATHGoogle Scholar
  56. [56]
    Remmert, R., van de Ven, T., “Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten,” Topologie 2, 137–157 (1963).zbMATHCrossRefGoogle Scholar
  57. [57]
    Richardson, R.W., “Affine coset spaces of reductive algebraic groups,” Bull. London Math. Soc. 9, 38–41 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    Rosenlicht, M., “Some basic theorems on algebraic groups,” Am. J. Math. 78, 401–443 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    Rossi, H., “Homogeneous strongly pseudoconvex hyperfaces,” Rice Studies 59(3), 131–145 (1973).Google Scholar
  60. [60]
    Serre, J.-P., “Quelques problèmes globaux relatifs aux variétés de Stein,” Colloque sur les fonctions de plusieurs var. Bruxelles 1953, 57–68.Google Scholar
  61. [61]
    Skoda, H., “Fibres holomorphes à base et à fibre de Stein,” Inv. Math. 43, 97–107 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    Snow, J., “Complex solv-manifolds of dimension two and three,” Thesis, Notre Dame University (1979).Google Scholar
  63. [63]
    Stein, K., “Analytische Zerlegungen komplexer Räume,” Math. Ann. 132, 63–93 (1956).MathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    Tits, J., “Espaces homogènes complexes compacts,” Comm. Math. Helv. 37, 111–120 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    Ueno, K., “Classification theory of algebraic varieties and compact complex spaces,” Lecture Notes in Mathematics, 439, Berlin-Heidelberg-New York: Springer 1975.zbMATHGoogle Scholar
  66. [66]
    van de Ven, T., “Analytic compactif¡cations of complex homology cells,” Math. Ann. 147, 189–204 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    Wang, H.C., “Closed manifolds with homogeneous complex structure,” Am. J. Math. 76, 1–32 (1954).zbMATHCrossRefGoogle Scholar
  68. [68]
    Wang, H.C., “Complex paral lelisable manifolds,” Proc. Am. Math. Soc. 5, 771–776 (1954).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • A. T. Huckleberry
    • 1
  • E. Oeljeklaus
    • 2
  1. 1.Fachbereich MathematikUniversität BochumBochumGermany
  2. 2.Fachbereich MathematikUniversität BremenBremen 33Germany

Personalised recommendations