Advertisement

On the Orders of the Automorphism Groups of Certain Projective Manifolds

  • Alan Howard
  • Andrew John Sommese
Part of the Progress in Mathematics book series (PM, volume 14)

Abstract

It is a well-known theorem of Hurwitz that the automorphism group of a compact Riemann surface of genus g > 1 has order not larger than 84 (g - 1). This was generalized by Bochner who proved that a compact Riemannian manifold with negative Ricci tensor has a finite automorphism group, and Kobayashi who derived the same conclusion for a compact complex manifold with negative first Chern class [K]. The group of birational transformations was studied by Matsumura [M1] who proved that it contains no one-parameter subgroup, provided the manifold has ample canonical bundle.

Keywords

Automorphism Group Abelian Subgroup Isotropy Subgroup Chern Number Base Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Andreotti, A., “Sopra le superficie che possegono trasformazioni birazionali in se,” Univ. Roma Ist. Naz. Alta Math., Red. Mat. e Appl. 9 (1950), 255–279.MathSciNetzbMATHGoogle Scholar
  2. [B]
    Bombieri, E., “Canonical models of surfaces of general type,” Publ. Math. IHES 42 (1973), 171–219.MathSciNetGoogle Scholar
  3. [D]
    Deligne, P., “Théorie de Hodge II, Publ. Math. IHES 40 (1971), 5–57.MathSciNetzbMATHGoogle Scholar
  4. [DK]
    Deligne, P. and Katz, N., Groupes de Monodromie en Geometrie Algébrique (SGA 7 II), Springer Lecture Notes 370, Springer Verlag, Heidelberg, 1973.Google Scholar
  5. [G]
    Griffiths, P., “Periods of integrals on algebraic manifolds III,” Publ. Math. IHES 38 (1970), 125–180.zbMATHGoogle Scholar
  6. [GH]
    Griffiths, P. and Harris, J., “Algebraic geometry and local differential geometry,” Ann. Sci. éoole Norm. Sup. 4 e sériet. 12 (1979), 355–432.MathSciNetzbMATHGoogle Scholar
  7. [H]
    Hirzebruch, F., “Hilbert modular surfaces,” Enseignement Math. 19 (1973), 183–281.MathSciNetzbMATHGoogle Scholar
  8. [J]
    Jordan, C., “Memoire sur les equations differentielles linéaires à integrales algebriques,” J. Reine Angew. Math. 84 (1878), 89–215.CrossRefGoogle Scholar
  9. [K]
    Kobayashi, S., Transformation Groups in differential Geometry, Ergebnisse 70, Springer Verlag, Heidelberg, 1972.zbMATHCrossRefGoogle Scholar
  10. [LM]
    Lieberman, D. and Mumford, D., “Matsusaka’s big theorem,” AMS Proceedings of Symposia in Pure Mathematics 29 (1975), 513–530.MathSciNetCrossRefGoogle Scholar
  11. [M1]
    Matsumura, H., “On algebraic groups of birational transformations,” Atti Accad. Naz. dei Lincei 34 (1963), 151–155.MathSciNetzbMATHGoogle Scholar
  12. [M2]
    Miyaoka, Y., “On the Chern numbers of surfaces of general type,” Inv. Math, 42 (1977), 225–237.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [M3]
    Moishezon, B.G., Complex Surfaces and Connected Sums of Complex Projective Planes, Springer Lecture Notes 603, Springer Verlag, Heidelberg, 1977.zbMATHGoogle Scholar
  14. [MM]
    Matsumura, H. and Monsky, P., “On the automorphisms of hypersur-faces,” J. Math. Kyoto Univ. 3 (1964), 347–361.MathSciNetzbMATHGoogle Scholar
  15. [OS]
    Orlick, P. and Solomon, L., “Singularities II: Automorphisms of forms,” Math. Ann. 231 (1978), 229–240.CrossRefGoogle Scholar
  16. [R1]
    Ragunathan, M.S., Discrete Subgroups of Lie Groups, Ergebnisse 68, Springer Verlag, Heidelberg, 1972.CrossRefGoogle Scholar
  17. [R2]
    Ramanujam, C.P., “Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. 39 (1972), 41–51.MathSciNetGoogle Scholar
  18. [S]
    Shafarevich, I.R., Algebraic Surfaces, Proceedings of the Steklov Institute 75, American Mathematical Society, Providence, 1967.Google Scholar
  19. [T]
    Tu, L.W., “Variation of Hodge structure and the local Torelli problem,” Harvard University Thesis, 1979.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Alan Howard
    • 1
  • Andrew John Sommese
    • 1
  1. 1.University of Notre DameNotre DameUSA

Personalised recommendations