Advertisement

The Complex Laplace-Beltrami Operator Canonically Associated to a Polarized Abelian Variety

  • Jun-ichi Hano
Part of the Progress in Mathematics book series (PM, volume 14)

Abstract

A hotomorphic line bundle over an abelian variety whose Chern class is positive definite admits a complex Laplace-Beltrami operator canonical ly determined by the Chern class. In this paper, we study some implications of the Selberg trace formula applied to this elliptic differential operator acting on the Hilbert space of sections of the bundle.

Keywords

Hilbert Space Line Bundle Heisenberg Group Theta Function Chern Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Auslander, L. and Tolimieri, R., “Abelian Harmonic Analysis, Theta Function and Functional Algebra on a Nilmanifold,” Lecture Notes in Math. 436 (1975), Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  2. [2]
    Beteman, H., Beteman Manuscript Project, Table of Integral Transforms, McGraw-Hill, New York, 1954.Google Scholar
  3. [3]
    Cartier, P., “Quantum mechanical commutation relations and theta functions,” Proc. Symp. Pure Math. IX, A.M.S.(1966), 361–383.Google Scholar
  4. [4]
    Dieudonné, J., Elements d’Analyse VII, Gauthier-Vi1lars, Paris, 1978.zbMATHGoogle Scholar
  5. [5]
    Hejhal, D.A., “The Selberg Trace Formula for PSL(2,IR) I,” Lecture Notes in Math. 548 (1976), Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  6. [6]
    Igusa, J., Theta Functions, Springer Verlag, Berlin, Heidelberg, New York, 1972.zbMATHCrossRefGoogle Scholar
  7. [7]
    Kodaira, K., “On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux,” Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 865–868.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Shimura, G., “On the derivatives of theta functions and modular forms,” Duke Math. J. 44 (1977), 365–337MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Tolimieri, R., “Heisenberg manifolds and theta functions,” Trans. A.M.S. 239 (1978), 293–320.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Weil, A., Introduction à l’Etude des Variétés Kählériennes, Hermann, Paris, 1958.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Jun-ichi Hano
    • 1
  1. 1.Washington UniversitySt. LouisUSA

Personalised recommendations