Parallel Submanifolds of Space Forms

  • Masaru Takeuchi
Part of the Progress in Mathematics book series (PM, volume 14)


A submanifold M of a Riemannian manifold M is said to be parallel if the second fundamental form of \( \overline M \) is parallel. For example, an affine subspace M of IRm or a symmetric R-space M ∈ ℝm, which is minimally imbedded in a hypersphere of IRm (cf. Takeuchi-Kobayashi [12]), is a parallel submanifold of IRm. Ferus ([3], [4]) showed that essentially these submanifolds exhaust all parallel sub-manifolds of ℝm in the following sense: A complete full parallel submanifold of the Euclidean space IRm = Mm (0) is congruent to
$$M = I{R^{{m_0}}} \times {M_l} \times ...{M_s} \subset I{R^{{m_0}}} \oplus I{R^{{m_1}}} \oplus ... \oplus I{R^{{m_s}}} = I{R^m},\;m = {m_0} + \sum {{m_i}} ,s \ge 0,\;or\;to$$
so ⩾ 0, or to
$$M = {M_l} \times ... \times {M_s} \subset I{R^{{m_l}}} \oplus ... \oplus I{R^{{m_s}}} = I{R^m},m = \sum {{m_i},s \ge 1,}$$
where each Mi ⊂ ℝ is an irreducible symmetric R-space.


Vector Field Riemannian Manifold Fundamental Form Space Form Isometric Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chern, S.S., do Carmo, M., Kobayashi, S., “Minimal submanifolds of a sphere with second fundamental form of constant length,” Functional Analysis and Related Fields, ed. by F.E. Browder, Springer, 1970, 59–75.CrossRefGoogle Scholar
  2. [2]
    Ferus, D., “Immersionen mit paralleler zweiter Fundamentalform: Beispiele and Nicht-Beispiele,” Manus. Math. 12 (1974), 153–162.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Ferus, D., “Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform,” Math. Ann. 211 (1974), 1–5.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Ferus, D., “Immersions with parallel second fundamental form,” Math. Z. 140 (1974), 87–93.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Kobayashi, S., Nagano, T., “On filtered Lie algebras and geometric structures I,” J. Math. Mech. 13 (1964), 875–908.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Kobayashi, S., Nomizu, K., Foundations of Differential Geometry II, Interscience, New York, 1969.zbMATHGoogle Scholar
  7. [7]
    Moore, J.D., “Isometric immersions of Riemannian products,” J. of Biff. Geom. 5 (1971), 159–168.zbMATHGoogle Scholar
  8. [8]
    Sakamoto, K., “Planar geodesic immersions,” Tôhoku Math. J. 29 (1977), 25–56.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Tai, S.S., “On minimum imbeddings of compact symmetric spaces of rank one,” J. Diff. Geom. 2 (1968), 55–66.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Takahashi, T., “Homogeneous hypersurfaces in spaces of constant curvature,” J. Math. Sci. Japan 22 (1970), 395–410.zbMATHCrossRefGoogle Scholar
  11. [11]
    Takeuchi, M., “Cell decomposition and Morse equalities on certain symmetric spaces,” J. Fac. Sci. Univ. Tokyo 12 (1965), 81–192.zbMATHGoogle Scholar
  12. [12]
    Takeuchi, M., Kobayashi, S., “Minimal imbeddings of R-spaces,” J. Diff. Geom. 2 (1968), 203–215.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Masaru Takeuchi
    • 1
  1. 1.Osaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations