Skip to main content

Parallel Submanifolds of Space Forms

  • Chapter
Manifolds and Lie Groups

Part of the book series: Progress in Mathematics ((PM,volume 14))

Abstract

A submanifold M of a Riemannian manifold M is said to be parallel if the second fundamental form of \( \overline M \) is parallel. For example, an affine subspace M of IRm or a symmetric R-space M ∈ ℝm, which is minimally imbedded in a hypersphere of IRm (cf. Takeuchi-Kobayashi [12]), is a parallel submanifold of IRm. Ferus ([3], [4]) showed that essentially these submanifolds exhaust all parallel sub-manifolds of ℝm in the following sense: A complete full parallel submanifold of the Euclidean space IRm = Mm (0) is congruent to

$$M = I{R^{{m_0}}} \times {M_l} \times ...{M_s} \subset I{R^{{m_0}}} \oplus I{R^{{m_1}}} \oplus ... \oplus I{R^{{m_s}}} = I{R^m},\;m = {m_0} + \sum {{m_i}} ,s \ge 0,\;or\;to$$
((a))

so ⩾ 0, or to

$$M = {M_l} \times ... \times {M_s} \subset I{R^{{m_l}}} \oplus ... \oplus I{R^{{m_s}}} = I{R^m},m = \sum {{m_i},s \ge 1,}$$
((b))

where each Mi ⊂ ℝ is an irreducible symmetric R-space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chern, S.S., do Carmo, M., Kobayashi, S., “Minimal submanifolds of a sphere with second fundamental form of constant length,” Functional Analysis and Related Fields, ed. by F.E. Browder, Springer, 1970, 59–75.

    Chapter  Google Scholar 

  2. Ferus, D., “Immersionen mit paralleler zweiter Fundamentalform: Beispiele and Nicht-Beispiele,” Manus. Math. 12 (1974), 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferus, D., “Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform,” Math. Ann. 211 (1974), 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferus, D., “Immersions with parallel second fundamental form,” Math. Z. 140 (1974), 87–93.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kobayashi, S., Nagano, T., “On filtered Lie algebras and geometric structures I,” J. Math. Mech. 13 (1964), 875–908.

    MathSciNet  MATH  Google Scholar 

  6. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry II, Interscience, New York, 1969.

    MATH  Google Scholar 

  7. Moore, J.D., “Isometric immersions of Riemannian products,” J. of Biff. Geom. 5 (1971), 159–168.

    MATH  Google Scholar 

  8. Sakamoto, K., “Planar geodesic immersions,” Tôhoku Math. J. 29 (1977), 25–56.

    Article  MathSciNet  MATH  Google Scholar 

  9. Tai, S.S., “On minimum imbeddings of compact symmetric spaces of rank one,” J. Diff. Geom. 2 (1968), 55–66.

    MathSciNet  MATH  Google Scholar 

  10. Takahashi, T., “Homogeneous hypersurfaces in spaces of constant curvature,” J. Math. Sci. Japan 22 (1970), 395–410.

    Article  MATH  Google Scholar 

  11. Takeuchi, M., “Cell decomposition and Morse equalities on certain symmetric spaces,” J. Fac. Sci. Univ. Tokyo 12 (1965), 81–192.

    MATH  Google Scholar 

  12. Takeuchi, M., Kobayashi, S., “Minimal imbeddings of R-spaces,” J. Diff. Geom. 2 (1968), 203–215.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takeuchi, M. (1981). Parallel Submanifolds of Space Forms. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_23

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics