The Tannaka Duality Theorem for Semisimple Lie Groups and the Unitarian Trick

  • Mitsuo Sugiura
Part of the Progress in Mathematics book series (PM, volume 14)


Harish-Chandra [6] found that the Tannaka duality theorem almost holds for connected semisimple Lie groups but it does not hold exactly. It remained an open question when the Tannaka duality theorem holds for semisimple Lie groups. In this paper, we answer the question in the fol lowing way.


Algebraic Group Rational Representation Maximal Compact Subgroup Faithful Representation Algebraic Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Cartier, “Dualité de Tannaka des groupes et algèbres de Lie,” C.R., Paris 242 (1956), 322–325.MathSciNetzbMATHGoogle Scholar
  2. [2]
    C. Chevalley, Theory of Lie Groups I, Princeton Univ. Press.Google Scholar
  3. [3]
    C. Chevalley, Théorie des Groupes de Lie, t II, Hermann, 1948.Google Scholar
  4. [4]
    C. Chevalley and S. Eilenberg, “Cohomology theory of Lie groups and Lie algebras,” Trans. A.M.S. 63 (1948), 85–124.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    M. Goto, “Faithful representations of Lie groups,” Math. Japonioa 1 (1948), 107–119.MathSciNetGoogle Scholar
  6. [6]
    Harish-Chandra, “Lie algebras and the Tannaka duality theorem,” Ann. of Math. 51 (1950), 299–330.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    G. Hochschild and G.D. Mostow, “Representations and representative functions of Lie groups,” Ann. of Math. 66 (1957), 495–542.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Y. Matsushima, “Espaces homogènes de Stein des groupes de Lie complexes,” Nagoya Math. J. 16 (1960), 205–218.MathSciNetzbMATHGoogle Scholar
  9. [9]
    M. Sugiura, “Some remarks on duality theorems of Lie groups,” Proc. Japan Academy 43 (1967), 927–931.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    T. Tannaka, “Dualität der nicht-kommutativen Gruppen,” Tohoku Math. J. 53 (1938), 1–12.Google Scholar
  11. [11]
    H. Weyl, “Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen I, II, III,” Math. Z. 23 (1925), 271–309, 24 (1926), 328–395.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Mitsuo Sugiura
    • 1
  1. 1.College of Genneral EducationUniversity of TokyoKomaba, Meguroku, Tokyo 153Japan

Personalised recommendations