Skip to main content

Hessian Manifolds and Convexity

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 14))

Abstract

Let M be a flat affine manifold, that is, M admits open charts (Ui, x 1i ,..., x ni such that M =U Ui and whose coordinate changes are all affine functions. Such local coordinate systems { ni ,...,x ni } will be called affine local coordinate systems. Throughout this note the local expressions for geometric concepts on M will be given in terms of affine local coordinate systems. A Riemannian metric g on M is said to be Hessian if for each point p∈M there exists a C-function (⌽ defined on a neighborhood of p such that gij=∂2ø/∂xi ∂xj. Such a function ⌽ is called a primitive of g on a neighborhood of p. Using the flat affine structure we define the exterior differentiation dl for tensor bundle valued forms on M. Let g be the cotangent bundle valued 1-form on M corresponding to a Riemannian metric g on M. Then we know that g is Hessian if and only if g0 is dl-closed. A flat affine manifold provided with a Hessian metric is called a Hessian manifold[4], [5]. Koszul dealt with the case where g0 is dl-exact [1], [2], [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Koszul, “Domaines bornés homogenès et orbites de groupes de transformations affines,” Bull, Soc. Math. France 89 (1961), 515–533.

    MathSciNet  MATH  Google Scholar 

  2. J.L. Koszul, “Variétés localement plates et convexité,” Osaka J. Math. 2 (1965), 285–290.

    MathSciNet  MATH  Google Scholar 

  3. J.L. Koszul, “Déformations de connexions localement plates,” Ann. Inst. Fourier, Grenoble 18, 1 (1968), 103–114.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Shima, “On certain locally flat homogeneous manifolds of solvable Lie groups,” Osaka J. Math. 13 (1976), 213–229.

    MathSciNet  MATH  Google Scholar 

  5. H. Shima, “Homogeneous Hessian manifolds,” Ann. Inst. Fourier, Grenoble 30, 3 (1980).

    Article  MathSciNet  Google Scholar 

  6. K. Yagi, “On Hessian structures on an affine manifold,” in Manifolds and Lie Groups, Papers in Honor of Yozô Matsushima, Progress in Mathematics, Vol. 14, Birkhäuser, Boston, Basel, Stuttgart, 1981, 449–459.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shima, H. (1981). Hessian Manifolds and Convexity. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics