On Compact Einstein Kähler Manifolds with Abundant Holomorphic Transformations

  • Yusuke Sakane
Part of the Progress in Mathematics book series (PM, volume 14)


Let (M,J,g) be a compact connected Kähler manifold and let Ric(g) denote the Ricci tensor. A compact Kähler manifold (M,J,g) is said to be Einstein if Ric(g) = kg for some k ∈ R. If we denote by γ the Ricci form of (M,J,g) (γ(X,Y) = Ric(g)(X,JY)) and by ω the Kähler form, (M,J,g) is Einstein if and only if γ = kω (k ∈ R). Let H2 (M, ℝ) denote the 2nd cohomology group with the coefficients in R. It is known that the first Chern class c1 (M) of a compact Kähler manifold (M, J, g) is given by
$${c_1}\left( M \right) = \frac{1}{{2\pi }}\left[ \gamma \right] \in {H^2}\left( {M,R} \right)$$


Chern Class Isotropy Subgroup Hermitian Manifold Holomorphic Line Bundle Compact Complex Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Aubin, “Equations du type Monge-Ampère sur les varieties Kähleriennes compacts,” C.R. Acad. Sci. Paris 283 (1976), 119–121.MathSciNetzbMATHGoogle Scholar
  2. [2]
    A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.zbMATHGoogle Scholar
  3. [3]
    A. Borel and J. De Siebenthal, “Les sous-groupes fermes des rang maximum des groupes de Lie clos,” Comment. Math. Helv. 23 (1949), 200–221.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Bott, “Homogeneous vector bundles,” Ann. of Math. 66 (1975), 203–248.MathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Bourbaki, Groupes et Algebres de Lie, Chap. 4,5 et 6, Hermann, Paris, 1968.zbMATHGoogle Scholar
  6. [6]
    N. Bourbaki, Groupes et Algebres de Lie, Chap. 7 et 8, Hermann, Paris, 1975.zbMATHGoogle Scholar
  7. [7]
    E.B. Dynkin, “The maximal subgroups of the classical groups,” Amer. Math. Soc. Transi. (2), 6 (1957), 245–378.MathSciNetzbMATHGoogle Scholar
  8. [8]
    F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer Verlag, Berlin, 1966.zbMATHCrossRefGoogle Scholar
  9. [9l.
    M. Ise, “Some properties of complex analytic vector bundles over compact complex homogeneous spaces,” Osaka Math. J. 12 (1960), 217–252.MathSciNetzbMATHGoogle Scholar
  10. [10]
    K. Ishikawa and Y. Sakane, “On complex projective bundles over a Kähler C-space,” Osaka Math. J. 16 (1979), 121–132.MathSciNetzbMATHGoogle Scholar
  11. [11]
    W. Kaup, “Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen,” Invent. Math. 3 (1967), 43–70.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Y. Kimura, “On the hypersurfaces of hermitian symmetric spaces of compact type,” Osaka J. Math. 16 (1979), 79–119.Google Scholar
  13. [13]
    S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972.zbMATHCrossRefGoogle Scholar
  14. [14]
    S. Kobayashi, “On compact Kähler manifolds with positive definite Ricci tensor,” Ann. of Math. 74 (1961), 570–574.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    S. Kobayashi and T. Nagano, “Riemannian manifolds with abundant isometries,” differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo (1972), 195–219.Google Scholar
  16. [16]
    S. Kobayashi and T. Ochiai, “Three-dimensional compact Kähler manifolds with positive holomorphic bisectional curvature,” J. Math. Soc. Japan 24 (1972), 465–480.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    B. Kostant, “Lie algebra cohomology and the generalized Borel-Weil theorem,” Ann. of Math. 74 (1961), 329–387.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    T. Mabuchi, “On the classification of essentially effective SL(n,C)-actions on algebraic n-folds,” Osaka J. Math. 16 (1979), 745–758.MathSciNetzbMATHGoogle Scholar
  19. [19]
    L.N. Mann, “Gaps in the dimensions of transformation group,” Illinois J. Math. 10 (1966), 532–546.MathSciNetzbMATHGoogle Scholar
  20. [20]
    Y. Matsushima, “Sur les espaces homogènes Kä’hlériennes d’un groupe de Lie reductif,” Nagoya Math. J. 11 (1957), 53–60.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Y. Matsushima, “Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété Kâ’hlérienne,” Nagoya Math. J. 11 (1957), 145–150.MathSciNetzbMATHGoogle Scholar
  22. [22]
    Y. Matsushima, “Remarks on Kähler-Einstein manifolds,” Nagoya Math. J. 46 (1972), 161–173.MathSciNetzbMATHGoogle Scholar
  23. [23]
    J. Milnor, “Lectures on Morse theory,” Annals Math. Studies No. 51, Princeton Univ. Press, 1963.Google Scholar
  24. [24]
    S. Tanno, “The automorphism groups of almost hermitian manifolds,” Trans. Amer. Soo. 137 (1969), 269–275.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    F. Uchida, “Smooth actions of special unitary groups on cohomology complex projective spaces,” Osaka J. Math. 12 (1975), 375–400.MathSciNetzbMATHGoogle Scholar
  26. [26]
    S.T. Yau, “On the curvature of compact Hermitian manifolds,” Invent. Math. 25 (1974), 213–239.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    S.T. Yau, “On the Ricci cúrvature of a compact Kähler manifold and the complex Monge-Ampère equation I,” Comm. Pure Appl. Math. 31 (1978), 339–411.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Yusuke Sakane
    • 1
  1. 1.Osaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations