Periodic Points on Nilmanifolds

  • Minoru Nakaoka
Part of the Progress in Mathematics book series (PM, volume 14)


Shub and Sullivan [13] proves that every C1-map f : M → M of a compact smooth manifold has infinitely many periodic points if the Lefschetz numbers L(fk), k = 1,2,..., are unbounded. This is not generally true if f is a continuous map, and even if f is a homeo-morphism (see [11]).


Periodic Point Coset Space Lefschetz Number Fixed Point Index Compact Smooth Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Auslander, “Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups,” Ann. of Math. 71 (1960), 579–590.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, 1971.zbMATHGoogle Scholar
  3. [3]
    A. Dold, “The fixed point transfer of fibre-preserving maps,” Math. Z. 148 (1976), 215–244.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    J. Franks, Anasov diffeomorphisms, Global Analysis, Proc. Symp. Pure Math., 14., Amer. Math. Soc. (1970), 61–93.MathSciNetCrossRefGoogle Scholar
  5. [5]
    B. Halpern, “Periodic points on tori,” Pacific J. of Math. 83, (1979), 117–133.zbMATHCrossRefGoogle Scholar
  6. [6]
    M. Hirsch, Differential Topology, Springer-Verlag, 1976.zbMATHCrossRefGoogle Scholar
  7. [7]
    A. Malcev, “On a class of homogeneous spaces,” Amer. Math. Soc. Translation (1) 9 (1962), 276–307.MathSciNetGoogle Scholar
  8. [8]
    A. Malcev, “Nilpotent torsion-free groups,” Izv. Akad. Nauk SSSR Ser. Math. 13 (1949), 201–212 (Russian).MathSciNetGoogle Scholar
  9. [9]
    A. Manning, “Anosov diffeomorphisms on nilmanifolds,” Proc. Amer. Soc. 38 (1973), 423–426.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Manning, “There are no new Anosov diffeomorphisms on tori,” Amer. J. Math. 96 (1974), 422–429.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    C. Pugh et al., “On the entropy conjecture,” Lecture Notes in Math. 468, Springer-Verlag, (1975), 257–261.MathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Shub, “Endomorphisms of compact differentiable manifolds,” Amer. J. Math. 91 (1969), 175–199.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. Shub and D. Sullivan, “A remark on the Lefschetz fixed point formula for differentiable maps,” Topology 13 (1974), 189–191.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    S. Smale, “Differentiable dynamical systems,” Bull. Amer. Math. Soc. 73 (1967), 747–817.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Minoru Nakaoka
    • 1
  1. 1.Osaka UniversityToyonaka, Osaka 560Japan

Personalised recommendations