Advertisement

Holomorphic Structures Modeled After Compact Hermitian Symmetric Spaces

  • Shoshichi Kobayashi
  • Takushiro Ochiai
Part of the Progress in Mathematics book series (PM, volume 14)

Abstract

Let M be a compact m-dimensional complex manifold and F(M) the holomorphic frame bundle over M. Then π:F(M)→M is a holomorphic principal GL(m;c)-bundle over M. Let G be a complex Lie subgroup of GL(m;c). A holomorphic principal G-subbundle tt:P + M of Fin) is called a holomorphic G-structure on M.

Keywords

Ricci Tensor Hermitian Symmetric Space Kill Vector Field Compact Complex Surface Holomorphic Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Inoue, S. Kobayashi and T. Ochiai, “Holomorphic affine connections on compact complex surfaces,” J. Fac. Sci. Univ. Tokyo 27 (1980), 247–264.MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. Kobayashi, “First Chern class and holomorphic tensor fields,” Nagoya Math. J. 77 (1980), 5–11.MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. Kobayashi and T. Nagano, “On filtered Lie algebras and geometric structures,” I. J. Math. Mech. 13 (1964), 873–908Google Scholar
  4. 3a.
    S. Kobayashi and T. Nagano, “On filtered Lie algebras and geometric structures,” I. J. Math. Mech. 11. 14 (1965), 513–522MathSciNetGoogle Scholar
  5. 3b.
    S. Kobayashi and T. Nagano, “On filtered Lie algebras and geometric structures,” I. J. Math. Mech. III. 14 (1965), 679–706.MathSciNetGoogle Scholar
  6. 4.
    S. Kobayashi and T. Ochiai, “Holomorphic projective structures on compact complex surfaces,” Math. Ann. 249 (1980), 75–94.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 5.
    S. Kobayashi and T. Ochiai, “Holomorphic structures modeled after hyperquadrics,” to appear.Google Scholar
  8. 6.
    T. Ochiai, “Geometry associated with semi-simple flat homogeneous spaces,” Trans. Amer. Math. Soc. 152 (1970), 159–193.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 7.
    N. Tanaka, “On the equivalence problems associated with a certain class of homogeneous spaces,” J. Math. Sco. Japan 17 (1965), 103–139.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Shoshichi Kobayashi
    • 1
    • 2
  • Takushiro Ochiai
    • 1
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.University of TokyoBunkyo-ku, Tokyo 113Japan

Personalised recommendations