Convergence of Assimilation Procedures

  • Olivier Talagrand
Part of the Applied Mathematical Sciences book series (AMS, volume 36)


These notes deal with a number of mathematical problems related to four-dimensional data assimilation. They are based on a general criterion for convergence of an assimilation procedure, which is derived in Sections 1 and 2, and then applied to various cases.


Wind Field Spectral Radius Mass Field Successive Observation Geostrophic Adjustment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coddington, E.A. and Levinson, N. 1955 Theory of Ordinary Differential Equations. McGraw-Hill Book Company, London.Google Scholar
  2. Daley, R. and Puri, K. 1980 Four-Dimensional Data Assimilation and the Slow Manifold. Mon.Wea.Rev., 108, 85–99.CrossRefGoogle Scholar
  3. Kistler, R. and McPherson, D. 1975 On the use of a local wind correction technique in four-dimensional data assimilation. Mon.Wea.Rev., 103, 445–449.CrossRefGoogle Scholar
  4. Lorenc, A., Rutherford, I. and Larsen, G. 1977 The ECMWF Analysis and Data-Assimilation Scheme: Analysis of Mass and Wind Fields, Technical Report No. 6, ECMWF, Reading, U.K.Google Scholar
  5. Sadourny, R. 1972 Approximations en différences finies des équations de Navier-Stokes appliquées à un écoulement géophysique. Part III. Ann.Géophys., 28, 789–802.Google Scholar
  6. Tadjbakhsh, I.G. 1969 Utilization of time-dependent data in running solution of initial-value problems. J.Appl.Meteor., 8 389–391.CrossRefGoogle Scholar
  7. Talagrand, O. 1977 Contribution à l’assimilation quadri-dimensionelle d’observations météorologiques. Doctoral Thesis, Université Pierre-et-Marie Curie, Paris, France. Available from the author.Google Scholar
  8. Talagrand, O. 1981 On the mathematics of data assimilation. To be published in Tellus.Google Scholar
  9. Varga, R.S. 1962 Matrix iterative analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, USA.Google Scholar
  10. Williamson, D. and Dickinson, R. 1972 Periodic updating of meteorological variables. J.Atm.Sci., 29, 190–193.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1981

Authors and Affiliations

  • Olivier Talagrand
    • 1
  1. 1.ECMWFEngland

Personalised recommendations