Histochemical Investigations of Elastin, Collastin, and Other Collagens

  • Holde Puchtler
  • Faye Sweat Waldrop
  • Susan N. Meloan


Conventional staining technics for connective tissues, e.g., elastica stains, Van Gieson’s picro-fuchsin, and trichrome methods, were introduced between 1880 and 1910, but their chemical mechanism and significance remained obscure. Interpretations of staining patterns were based on tradition rather than chemical data. Histochemical studies during the 1960s demonstrated that elastica stains, e. g., resorcin-fuchsin, were not specific (Puchtler et al. 1961) and that there were striking differences between collagens (Puchtler and Sweat 1963, 1964a; Joiner et al. 1965; Smith et al. 1966); at that time all human collagen was still supposed to have the formula (a.1)2a.2. In addition, perusal of nineteenth century literature indicated that much early knowledge of connective tissue and arteriosclerosis has been forgotten. Many of these data have been rediscovered during the past twenty years.


Elastic Fiber Elastic Tissue Elastic Membrane Ring Fiber Reticulum Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abderhalden E, Schittenhelm A (1904) Die Abbauprodukte des Elastins. Hoppe Seylers Z Physiol Chern 41: 293–298Google Scholar
  2. Altschul R (1950) Selected studies on arteriosclerosis. Thomas, SpringfieldGoogle Scholar
  3. Argaud R (1908) Recherches sur l'histotopographie des elEfments contractiles et conjonctifs des parois arterielles chez les mollusques et les vertebras. J Anat Physiol 44: 328–414Google Scholar
  4. Arshid FM, Desai IN, Duff DJ, Jain SK, Macneal IR (1954a) A study of certain natural dyes. I. J Soc Dyers Colour 70: 392–401Google Scholar
  5. Arshid FM, Connelly RF, Desai IN, Fulton RG, Giles CH, Kefalas JC (1954b) A study of certain natural dyes. II. J Soc Dyers Colour 70: 402–412Google Scholar
  6. Auerbach B (1877) Ueber die Obliteration der Arterien nach Ligatur. Inaug Diss, BonnGoogle Scholar
  7. Baker JR (1960) Principles of biological microtechnique. Methuen, LondonGoogle Scholar
  8. Bangle R (1954) Gomori’s paraldehyde-fuchsin stain. I. J Histochern Cytochem 2: 291–299Google Scholar
  9. Becker CG, Nachman RL (1973) Contractile proteins in endothelial cells, platelets smooth muscle. Am J Pathol 71: 1–22PubMedGoogle Scholar
  10. Benda C (1921) Die Gefasse. In: Aschoff L (ed) Pathologische Anatomie, 5th edn, Vol 2. Fischer, JenaGoogle Scholar
  11. Benninghoff A (1930) Blutgefasse und Herz. In: von Mollendorff, W (ed) Handbuch der mikroskopischen Anatomie des Menschen, Vol 6, Part 1. Springer, Berlin, pp 1–232Google Scholar
  12. Bindi F (1908) SuI compartemento del tessuto elastico neUe arterie in rapporto a varie eta della vita. Morgagni (Milano) 1: 197–213Google Scholar
  13. Blumenthal HT, Alex M (1967) Arteriosclerosis of the coronary circulation. In: Blumenthal HT (ed) Cowdry's arteriosclerosis: a survey of the problem. Thomas, SpringfieldGoogle Scholar
  14. Bohm AA, von Davidoff M (1904) A textbook of histology including microscopic technic, 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  15. Bonnet (1896) Ueber den Bau der Arterienwand. Dtsch Med Wochenschr 22: 2–3Google Scholar
  16. Borgers M, Schaper J, Schaper W (1972) Ultrastructural cytochemistry of coronary smooth muscle. In: Betz E (ed) Vascular smooth muscle. Springer, New York, pp 116–118Google Scholar
  17. Borst, Enderlen (1909) tiber Transplantation von Geiassen und ganzen Organen. Dtsch Z Chir 99: 54–163Google Scholar
  18. Bregmann E (1890) Ein Beitrag zur Kenntnis der Angiosclerose. Inaug Diss, DorpatGoogle Scholar
  19. Brissie RM, Spicer SS, Hall BJ, Thompson NT (1974) Ultrastructural staining of thin sections with iron hematoxylin. J Histochem Cytochem 22: 895–907PubMedGoogle Scholar
  20. Brissie RM, Spicer SS, Thompson NT (1975) The variable fine structure of elastin visualized with Verhoeff's iron hematoxylin. Anat Rec 181: 83–94PubMedGoogle Scholar
  21. Brown RG, Walker RE, Aeschbacher HU, Boer AH, Smith MC (1974) Age related changes in the composition of the aorta of the groundhog, Marmota Monax. Growth 38: 295–300Google Scholar
  22. Buehner TS, Nettleton GS, Longley JB (1979) Staining properties of aldehyde fuchsin analogs. J Histochem Cytochem 27: 782–787PubMedGoogle Scholar
  23. Burton D, Hall DA, Keech MK, Reed R, Saxl H, Tunbridge RE, Wood MJ (1955) Apparent transformation of collagen fibrils into ‘elastin’ Nature 176: 966–969PubMedGoogle Scholar
  24. Caley ER (1927) The Stockholm Papyrus. J Chem Ed 4: 979–1002Google Scholar
  25. Chung E, Miller EJ (1974) Collagen polymorphism: characterization of molecules with the chain composition 3 in human tissue. Science 183: 1200–1201Google Scholar
  26. Chung E, Keele EM, Miller EJ (1974) Isolation and characterization of the cyanogen bromide peptides from the chain of human collagen. Biochem 13: 3459–3464Google Scholar
  27. Chung E, Rhodes K, Miller EJ (1976) Isolation of three collagenous components of probable basement membrane origin from several tissues. Biochem Biophys Res Commun 71: 1167–1174PubMedGoogle Scholar
  28. Clark AD, Puchtler H, Waldrop FS (1973a) Intimal hyperplasia in the renal arterial system of children and adolescents. J SC Med Assoc 69: 24Google Scholar
  29. Clark AD, Puchtler H, Waldrop FS (1973b) Investigation of “intimal cushions” in the renal arterial system of children and young adults. Bull Ga Acad Sci 31: 93Google Scholar
  30. Cotta-Pereira G, Rodrigo FG, David-Ferreira JF (1977) The elastic system fibers. In: Sandberg LB, Gray WR, Franzblau C (eds) Elastin and elastic tissue. Plenum Press, New York-London, pp 19–30Google Scholar
  31. Crawford T (1956) The healing of puncture wounds in arteries. J Pathol Bacteriol 72: 547–552Google Scholar
  32. Crowley JD, Teague GS, Lowe JW (1966) A three-dimensional approach to solubility. J Paint Technol 38: 269–280Google Scholar
  33. Derbyshire AN, Peters RH (1955) An explanation of dyeing mechanisms in terms of nonpolar bonding. J Soc Dyers Colour 71: 530–536Google Scholar
  34. Dmitrijeff A (1897) Die Veranderung des elastischen Gewebes der Arterienwande bei Arteriosklerose. Beitr Pathol Anat AUg Pathol 22: 207–247Google Scholar
  35. Dock W (1946) The predilection of atherosclerosis for the coronary arteries. J Am Med Assoc 131: 875–878PubMedGoogle Scholar
  36. Ehrlich R, Krause R, Mosse M, Rosin H, Weigert K (eds) (1910) Enzyklopiidie der mikroskopischen Technik. Urban 81 Schwarzenberg, BerlinGoogle Scholar
  37. Engle RL, Dempsey EW (1954) The separation of orcein into four fractions by chromatography and the staining qualities of each fraction. J Histochem Cytochem 2: 9–20PubMedGoogle Scholar
  38. Eulenberg A (1836) De Tela Elastica. Formis Neitackianis, BeroliniGoogle Scholar
  39. Farrar JF, Blomfield J, Reye RDK (1965) The structure and composition of the maturing pulmonary circulation. J Pathol Bacteriol 90: 83–96PubMedGoogle Scholar
  40. Fawcett DW (1959) The fine structure of capillaries, arterioles and small arteries. In: Reynolds SRM, Zweifach BW (eds) The microcirculation. The University of illinois Press, Urbana, pp 1–27Google Scholar
  41. Foot NC (1927) On the endothelium of the venous sinuses of the human spleen. Anat Rec 36: 91–102Google Scholar
  42. Friedberg SH, Goldstein DJ (1969) Thermodynamics of orcein staining of elastic fibers. Histochem J 1: 361–376PubMedGoogle Scholar
  43. Friedenwald JS (1933) Retinal arteriosclerosis. In: Cowdry EV (ed) Arteriosclerosis. MacMillan, New York, pp 363–395Google Scholar
  44. FriedIander C (1876) Ueber Arteriitis obliterans. Centralbl Med~ss 1876: 65–70Google Scholar
  45. Fuchs RF (1902) Zur Physiologie und Wachstumsmechanik des Blutgefass-Systems. Fischer, JenaGoogle Scholar
  46. Fullmer HM, Lillie RD (1957) The staining of collagen with elastic tissue stains. J Histochem Cytochem 5: 11–14PubMedGoogle Scholar
  47. Gallop PM, Blumenfeld 00, Seifter S (1972) Structure and metabolism of connective tissue proteins. Ann Rev Biochem 41: 617–672PubMedGoogle Scholar
  48. Gattermann L, Wichmann G (1889) Ueber Aldehydblau. Ber Dtsch Chern Ges 22: 227–236Google Scholar
  49. Gay S, Fietzek PP, Remberger K, Eder M, Kuhn K (1975a) Liver cirrhosis: immunofluorescence and biochemical studies demonstrate two types of collagen. Klin Wochenschr 53: 205–208Google Scholar
  50. Gay S, Balleisen L, Remberger K, Fietzek PP, Adelmann BC, Kuhn K (1975b) Immunohistochemical evidence for the presence of collagen type III in human arterial walls, arterial thrombi, and in leucocytes incubated with collagen in vitro. Klin Wochenschr 53: 899–902Google Scholar
  51. Gay S, Walter P, Kuhn K (1976) Characterization and distribution of collagen types in arterial heterografts originating from the calf carotis. Klin Wochenschr 54: 889–894PubMedGoogle Scholar
  52. Gierke H (1884) Farberei zu mikroskopischen Zwecken. Z wiss Mikrosk 1: 497–557Google Scholar
  53. Gilbert W (1903) Untersuchungen uber den Bau der Intima der Aorta unter normalen und pathologischen Verhiiltnissen. Georgi, BonnGoogle Scholar
  54. Gillman T (1959) Reduplication, remodeling, regeneration, repair and degeneration of arterial elastic membranes. Arch Pathol 67: 624–642Google Scholar
  55. Gillman T, Penn J, Bronks D, Roux M (1955) Abnormal elastic fibers. Arch Pathol 59: 733–749Google Scholar
  56. Gillman T, Hathorn M, Penn J (1957) Micro-anatomy and reactions to injury of vascular elastic membranes and associated polysaccharides. In: Tunbridge RE, Keech M, Delafresnaye JF, Wood GC (eds) Connective tissue. Thomas, SpringfieldGoogle Scholar
  57. Gomori G (1950) Aldehyde-fuchsin: a new stain for elastic tissue. Am J CUn Pat hoi 20: 665–666Google Scholar
  58. Grant RA (1965) Preparation of elastin-like material from collagen by crosslinking followed by heat treatment. Biochem J 97: 5c–7cGoogle Scholar
  59. Grassmann W (1960) Kollagen und Bindegewebe. Sven Kern Tidskr 72: 275–302Google Scholar
  60. Greenlee TK, Ross R, Hartman JC (1966) The fine structure of elastic fibers. J Cell BioI 30: 59–71Google Scholar
  61. Gross J, Schmitt FO (1948) The structure of human skin collagen as studied with the electron microscope. J Exp Med 88: 555–567PubMedGoogle Scholar
  62. Grunstein N (1895) Histologische Untersuchungen tiber den Bau der menschlichen Aorta in verschiedenen Altersstufen. Bach, BonnGoogle Scholar
  63. Hall DA (1959) The fibrous components of connective tissue with special reference to the elastic fiber. Int Rev Cytol 8: 211–251PubMedGoogle Scholar
  64. Hall DA (1961) The chemistry of connective tissue. Thomas, SpringfieldGoogle Scholar
  65. Hallenberger 0 (1906) fiber die Sklerose der Arteria radialis. Arch Klin Med 87: 62–86Google Scholar
  66. Hama K (1960) The fine structure of some blood vessels of the earthworm Eisenia foetida. J Biophys Biochem Cytol 7: 717–724PubMedGoogle Scholar
  67. Hance AJ, Crystal RG (1975) The connective tissue of lung. Am Rev Resp Dis 112: 657–711PubMedGoogle Scholar
  68. Hannay FW (1951) Some clinical and histopathological notes on pseudoxanthoma elasticum. Br J Dermatol 63: 92–99Google Scholar
  69. Haralson MA, Mitchell WM, Rhodes RK, Gay S, Kresina TF, Miller EJ (1980) Synthesis of B chain collagen by Chinese hamster lung cells. Fed Proc 39: 1789Google Scholar
  70. Harper JT, Puchtler H, Meloan SN, Terry MS (1970) Histochemical study of basement membrane cristae in human kidneys. Lab Invest 22: 500Google Scholar
  71. Harris FO, Guion TH (1972) New approach to solvent dyeing with nonionic dyes. Text Res J 42: 626–627Google Scholar
  72. Haust MD (1965) Fine fibrils of extracellular space (microfibrils). Am J Pathol 47: 1113–1137PubMedGoogle Scholar
  73. Haust MD, More RH, Movat HZ (1960) The role of smooth muscle cells in the fibrogenesis of arteriosclerosis. Am J Pathol 37: 377–389PubMedGoogle Scholar
  74. Henle J (1843) Traite d'anatomie geneL"ale ou histoire des tissue et de la composition chimique du corps humain. Bailliere, ParisGoogle Scholar
  75. Hibbs RG, Burch GE, Phillips JH (1958) The fine structure of the small blood vessels of normal human dermis and subcutis. Am Heart J 56: 662–670PubMedGoogle Scholar
  76. Hogan MJ, Feeney L (1963) The ultrastructure of the retinal vessels. II. The small vessels. J Ultrastruct Res 9: 29–46Google Scholar
  77. Hormann H (1962) Zur Frage der Quervernetzung von Kollagen. Leder 13: 79-86Google Scholar
  78. Hoyer H (1900) Zur Histologie der capillaren Venen in der Milz. Anat Anz 17: 490-497Google Scholar
  79. Jackson JG, Puchtler H, Sweat F (1968) Investigation of staining, polarization and fluorescence microscopic properties of pseudoelastic fibers in the renal arterial system. J R Microsc Soc 88: 473–485Google Scholar
  80. Joiner DW, Puchtler H, Sweat F (1965) Investigation of the cross-linking of collagen in infants. Lab Invest 14: 577Google Scholar
  81. Joiner DW, Puchtler H, Gropp S (1966) Investigation of a collagen-like fibrous layer between the internal elastic membrane and intima in arteries of infants and its possible relation to hyperplastic arteriosclerosis. Lab Invest 15: 1141Google Scholar
  82. Joiner DW, Puchtler H, Gropp S (1967) Lesions resembling hyperplastic arteriosclerosis in infants: staining, polarization and fluorescence microscopic studies. Lab Invest 16: 651Google Scholar
  83. Joiner DW, Puchtler H, Sweat F (1968) Staining of immature collagen by resorcin-fuchsin in infant kidneys. J R Microsc Soc 88: 461–471Google Scholar
  84. Johnson WTM, Himelstein AL, Farmer DB, Horwitz 0 (1980) Chemical changes on aging in aortic and venus intima in relationship to atherosclerosis. Fed Proc 39: 428Google Scholar
  85. Jores L (1898) Ueber die Neubildung elastischer Fasern in der Intima bei Endarteriitis. Beitr Path Anat Allg Pathol 24: 458–474Google Scholar
  86. Jores L (1903) Wesen und Entwicklung der Arteriosklerose auf Grund anatomischer und experimenteller Untersuchungen. Bergmann, WiesbadenGoogle Scholar
  87. Jores L (1924) Arterien. In: Henke F, Lubarsch 0 (eds) Handbuch der speziellen pathologischen Anatomie und Histologie. Springer, Berlin, pp 608–786Google Scholar
  88. Jorg F (1972) Vergleichende messtechnische und mikroskopische Studien uber das farberische Verhalten von Polyamid- und Polyester-Fasern aus organischen Losungsmitteln. Melliand Textilber 53: 1041–1048Google Scholar
  89. Karrer HE (1958) The fine structure of connective tissue in the tunica propria of bronchioles. J Ultrastruct Res 2: 96–121Google Scholar
  90. Karrer HE, Cox J (1961) An electron microscopic study of the aorta in young and in aging mice. J Ultrastruct Res 5: 1–27Google Scholar
  91. Keech MK, Reed R, Wood MJ (1956) Further observations on the transformation of collagen fibrils into “elastin”: an electron microscope study. J Pathol Bacteriol 71: 477–493Google Scholar
  92. Kefalides F (1980) The “C” and “D” chains of basement membrane collagen arise from the same precursor type IV chain. Fed Proc 39: 1791Google Scholar
  93. Kendrew JC (1954) Elastin. In: Neurath H, Bailey K (eds) The proteins, Vol II, Pt B. Academic Press, New York, pp 946–949Google Scholar
  94. King JT, Puchtler H, Sweat F (1968) Investigation of ring fibers in human spleens. Arch Pathol 85: 237–245PubMedGoogle Scholar
  95. Koelliker A (1854) Manual of human microscopical anatomy. Lippincott, Grambo & Co, PhiladelphiaGoogle Scholar
  96. Kretschmann HJ (1963) Fluoreszenz-polarisationsmikroskopische Analyse der Ultrastruktur von Elastiklamellen und Elastikfasern. Z Zellforsch 60: 7–68Google Scholar
  97. Krieg T, Muller PK (1977) The Marfan’s syndrome. Exp Cell BioI 45: 207–221Google Scholar
  98. Kuhn K (1960) Uber den Ursprung des Querstreifungsmusters bei Kollagen. Leder 11: 110–117Google Scholar
  99. Kuhn K, Grassmann W, Hofmann U (1958) Die elektronenmikroskopische „Anfarbung“ des Kollagens und die Ausbildung einer hochunterteilten Querstreifung. Z Naturforsch 13b: 154–160Google Scholar
  100. Kuhns JG, Puchtler H, Sweat F (1961) Conversion of collagen and reticulum fibers into “elastic fibers”. J La State Med Soc 115: 443Google Scholar
  101. Kultschitzky N (1895) Zur Frage tiber den Bau der Milz. Arch Mikrosk Anat Entwicklungsgesch 46: 673–695Google Scholar
  102. Langeron M (1921) Precis de Microscopie, 3rd edn. Masson et Cie, ParisGoogle Scholar
  103. Lansing AG (1952) The role of elastic tissue in the formation of the arteriosclerotic lesion. Ann Intern Med 36: 39–49PubMedGoogle Scholar
  104. Lansing AI, Rosenthal TB, Alex M, Dempsey EW (1952) The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. Anat Rec 114: 555–575Google Scholar
  105. Laszt L (1972) Regulation der Gefassmuskelkontraktion durch zwei in der Gefasswand vorkommende vasoaktive Stoffe. In: Betz E (ed) Vascular smooth muscle. Springer, Berlin, pp 47–48Google Scholar
  106. Lehrell F (1903) Histochemische Untersuchungen uber das bindegewebige Gerust der Milz der Wirbeltiere. Int Monatsschr Anat Physiol 20: 171–206Google Scholar
  107. Levene CI (1956) The early lesions of atheroma in the coronary arteries. J Pathol Bacteriol 72: 79–82PubMedGoogle Scholar
  108. Lillie RD (1951) The allochrome procedure. Am J Clin Pathol 21: 484–487PubMedGoogle Scholar
  109. Love RB (1978) The use of nonaqueous solvents in dyeing. Pt 1. J Soc Dyers Colour 94: 440–447Google Scholar
  110. Low FN (1962) Microfibrils: fine filamentous components of the tissue space. Anat Rec 142: 131–137Google Scholar
  111. Magnus (1910) Aldehydgriin. In: Ehrlich R, Krause R, Mosse M, Rosin H, Weigert K (eds) Enzyklopadie der mikroskopischen Technik. Urban &: Schwarzenberg, Berlin, p 14Google Scholar
  112. Mall FP (1896) Reticulated tissue, and its relation to the connective tissue fibrils. Johns Hopkins Hospital Rep 1: 171–208Google Scholar
  113. Maresch R (1905) Ueber Gitterfasern der Leber und die Verwendbarkeit der methode Bielschowskys zur Darstellung feinster Bindegewebsfibrillen. Centralbl AUg Pathol Anat 16: 641–649Google Scholar
  114. Marshall PN, Horobin RW (1973) The mechanism of action of “mordant” dyes - a study using preformed metal complexes. Histochemie 35: 361–371Google Scholar
  115. McCullagh KG, Ehrhart LA (1974) Increased arterial collagen synthesis in experimental canine atherosclerosis. Atherosclerosis 19: 13–28PubMedGoogle Scholar
  116. McCullagh KG. Duance VC, Bishop KA (1980) The distribution of collagen I, III, and V A B in normal and atherosclerotic human aorta. J Pathol 130: 45–55Google Scholar
  117. McGregor R (1961) Developments in dyeing theory. Rev Text Prog 13: 322–331Google Scholar
  118. McLaughlin RT (1966) Collagen and elastin assay on various mammalian and human lungs. Am Rev Resp Dis 94: 632–634PubMedGoogle Scholar
  119. Mehnert E (1888) Ueber die topographische Verbreitung der Angiosclerose nebst Beitragen zur Kenntnis des normalen Baues der Aeste des Aortenbogens und einiger Venenstamme. Inaug Diss. DorpatGoogle Scholar
  120. Meloan SN, Puchtler H (1974) Observations on infrared fluorescence of stained sections. J SC Med Assoc 70: 81Google Scholar
  121. Meloan SN, Puchtler H (1975) A methanol resorcin-fuchsin stain for elastic tissues and nuclei. Stain Technol 50: 367–370PubMedGoogle Scholar
  122. Meloan SN. Puchtler H (1979) A re-investigation of early elastica stains. Anat Rec 193: 170–171Google Scholar
  123. Merkel H (1903) Die Beteiligung der Gefasswand an der Organisation des Thrombus, mit bes. Beriicksichtigung des Endothels. Junge, ErlangenGoogle Scholar
  124. Milicevic B (1970) Solvent dyeing: theory and practice. Text Chern Color 2: 87–98Google Scholar
  125. Miller EJ. Matukas VJ (1974) Biosynthesis of collagen: the biochemists view. Fed Proc 33: 1197–1204Google Scholar
  126. Miller EJ, Epstein EH. Piez KA (1971) Identification of three genetically distinct collagens by cyanogen bromide cleavage of insoluble human skin and cartilage collagen. Biochem Biophys Res Commun 42: 1024–1029Google Scholar
  127. Monick JA (1968) Alcohols: the chemistry, properties and manufacture.Reinhold, New YorkGoogle Scholar
  128. More RH, Balis J, Bencosme SA, Haust MD (1962) Electron microscope study of the elastic tissue in human aortas. Fed Proc 21: 121Google Scholar
  129. Moret PR (1964) Modifications de l'elasticite arterielle avec l’~ge. Cardiol Suppl 15: 40–75Google Scholar
  130. Ophuls W (1933) The pathogenesis of arteriosclerosis. In: Cowdry EV (ed) Arteriosclerosis. MacMillan. New York. pp 249–270Google Scholar
  131. Oppenheim F (1918) Uber den histologischen Bau der Arterien in der wachsenden und alternden Niere. Frankf Z Pathol 21: 57–84Google Scholar
  132. Ortman R. Forbes WF. Balasubramanian A (1966) Concerning the staining properties of aldehyde basic fuchsin. J Histochem Cytochem 14: 104–111PubMedGoogle Scholar
  133. Otto G (1962) Das Farben des Leders. Roether. DarmstadtGoogle Scholar
  134. Painter RG. Sheetz M. Singer SJ (1975) Detection and ultrastructural localization of human smooth muscle myosin-like molecules in human nonmuscle cells by specific antibodies. Proc Natl Acad Sci USA 72: 1359–1363Google Scholar
  135. Partridge SM (1958) Elastin-like structures from collagen. In: Stainsby C (ed) Recent advances in gelatin and glue research. Pergamon. New York. pp 255–256Google Scholar
  136. Partridge SM (1962) Elastin. Adv Protein Chern 17: 227–302Google Scholar
  137. Paschal LD. Puchtler H. Meloan SN (1978) Demonstration of lesions of striated muscle by infrared fluorescence microscopy. Lab Invest 38: 359Google Scholar
  138. Pearse AGE (1968) Histochemistry. theoretical and applied, 3rd edn. Vol 1. Brown, BostonGoogle Scholar
  139. Pfitzer R (1879) Ueber den Vernarbungsvorgang an durch Schnitt verletzten Blutgefassen. Virchows Arch 77: 397–420Google Scholar
  140. Pollard TD, Weihing RR (1974) Actin and myosin and cell movement.CRC Crit Rev Biochem 2: 1–65Google Scholar
  141. Prockop DJ, Kivirikko KI. Tuderman L. Guzman NA (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301: 13–23. 77–85Google Scholar
  142. Puchtler H. Isler H (1958) The effect of phosphomolybdic acid on the stainability of connective tissue by various dyes. J Histochem Cytochem 6: 265–270Google Scholar
  143. Puchtler H, Meloan SN (1978) Demonstration of phosphates in calcium deposits. Histochemistry 56: 177–185Google Scholar
  144. Puchtler H, Meloan SN (1979) Orcein, collastin and pseudo-elastica. Histochemistry 64: 119–130Google Scholar
  145. Puchtler H, Sweat F (1963) Influence of various pretreatments on the staining properties of connective tissue fibers. Ann d'Histochim 8: suppl 189–198Google Scholar
  146. Puchtler H, Sweat F (1964a) Histochemical specificity of staining methods for connective tissue fibers. Histochemie 4: 24–34Google Scholar
  147. Puchtler H, Sweat F (1964b) A selective stain for renal basement membranes. Stain Technol 39: 163–166Google Scholar
  148. Puchtler H, Waldrop FS (1978) Silver impregnation methods for reticulum fibers and reticulin. Histochemistry 57: 177–187PubMedGoogle Scholar
  149. Puchtler H, Waldrop FS (1979) On the mechanism of Verhoeff’s elastica stain. Histochemistry 62: 233–247PubMedGoogle Scholar
  150. Puchtler H, Sweat F, Bates R, Brown JH (1961) On the mechanism of resorcin-fuchsin staining. J Histochem Cytochem 9: 553–559PubMedGoogle Scholar
  151. Puchtler H, Sweat F, Jackson JG, Joiner DW (1966) Collagen-like staining, polarization and fluorescence microscopic properties of “elastic fibers” in hyperplastic arteriosclerosis. In: Comte P (ed) Biochemistry and physiology of connective tissue. Societe Ormeco et l'Imprimerie du Sud-Est, Lyon, pp 691–700Google Scholar
  152. Puchtler H, Sweat F, Terry MS, Conner HM (1969) Investigation of staining, polarization and fluorescence microscopic properties of myoendothelial cells. J Microsc 89: 95–104PubMedGoogle Scholar
  153. Puchtler H, Waldrop FS, Valentine LS (1973a) Fluorescence microscopic distinction between elastin and collagen. Histochemie 35: 17–30Google Scholar
  154. Puchtler H, Waldrop FS, Valentine LS (1973b) Polarization microscopic studies of connective tissue stained with picro-Sirius Red F3BA. Beitr Pathol 150: 174–187Google Scholar
  155. Puchtler H, Waldrop FS, Carter MG, Valentine LS (1974) Investigation of staining, polarization and fluorescence microscopic properties of myoepithelial cells. Histochemistry 40: 281–289PubMedGoogle Scholar
  156. Puchtler H, Meloan SN, Pollard GR (1976) Light microscopic distinction between elastin, pseudo-elastica (type III collagen?) and interstitial cOllagen. Histochemistry 49: 1–14PubMedGoogle Scholar
  157. Puchtler H, Meloan SN, Waldrop FS (1979) Aldehyde-fuchsin: historical and chemical considerations. Histochemistry 60: 113–123PubMedGoogle Scholar
  158. Reale E, Ruska H (1965) Die Feinstruktur der Gefiisswiinde. Angiologia 2: 314–366Google Scholar
  159. Remak R (1850) Histologische Bemerkungen tiber die Blutgelasswande. MulIers Arch Anat Physiol Wiss Med 1850: 79–101Google Scholar
  160. Remberger K, Gay S, Fietzek PP (1975) Immunhistochemische Untersuchungen zur Kollagencharakterisierung in Lebercirrhosen. Virchows Arch 367: 231–240Google Scholar
  161. Richter-Anschutz (1928) Chemie der Kohlenstoffverbindungen oder organische Chemie, 12th edn, Vol 1. Akademische Verlagsgesellschaft, Leip zigGoogle Scholar
  162. Riedel B (1876) Die Entwicklung der Narbe im Blutgefiisse nach der Unterbindung. Dtsch Z Chir 6: 462–473Google Scholar
  163. Riedel G (1975) Loslichkeit von Farbstoffen in organischen LOsungsmitteln. Defazet Dtsch Farben Z 29: 435–436Google Scholar
  164. Risse A (1853) Observationes quaedam de arteriarum statu normali atque pathologico. Dalkowski, RegiomontiGoogle Scholar
  165. Robb-Smith AHT (1952) The nature of reticulin. In: Ragan C (ed) Connective tissues, transaction of the third conference. Macy, New York, pp 92–116Google Scholar
  166. Rodgers JC, Puchtler H, Gropp S (1967a) Transition from elastin to collagen in internal elastic membranes. Arch Pathol 83: 557–566Google Scholar
  167. Rodgers JC, Puchtler H, Gropp S (1967b) Staining, polarization and fluorescence microscopic studies of medial sclerosis in the renal arterial system. Lab Invest 16: 651Google Scholar
  168. Rodgers JC, Puchtler H, Gropp S (1968) Histochemical, polarization and fluorescence microscopic studies of hyaline arteriolosclerosis in spleens. Lab Invest 18: 332–333Google Scholar
  169. Romeis B (1948) Mikroskopische Technik, 15th edn. Leibniz, MunichGoogle Scholar
  170. Rosenthal SI, Puchtler H, Sweat F (1965) Paper chromatography of dyes: method to investigate vagaries of staining. Arch Pathol 80: 190–196PubMedGoogle Scholar
  171. Ross R, Bornstein P (1969) The elastic fiber. Part I. J Cell BioI 40: 366–381Google Scholar
  172. Roulet F (1948) Methoden der pathologischen Histologie. Springer, ViennaGoogle Scholar
  173. Sage EH , Gray WR (1977) Evolution of elastin structure. In: Sandberg LB, Gray WR, Franzblau C (eds) Elastin and elastic tissue. Plenum, New York, pp 291–309Google Scholar
  174. Schiff H (1865) Note sur l’action des aldehydes sur la rosaniline. Compt R Acad Sci 61: 45–75Google Scholar
  175. Schiff H (1866) Eine neue Reihe organischer Diamine. Justus Liebigs Ann Chern 140: 92–137Google Scholar
  176. Schmiedl H (1907) Die histologischen Veranderungen der Arteria mesenterica superior in den verschiedenen Lebensaltern. Z Heilk 28: 165–193Google Scholar
  177. Schultze MJS (1849) De Arteriarum Notione, Structura, Constitutione Chemica et Vita. Kunike, GryphiaeGoogle Scholar
  178. Schwalbe G (1876) Beitrage zur Kenntnis des elastischen Gewebes. Z Anat Entwicklungsgesch 2: 236–273Google Scholar
  179. Sesta JJ, Puchtler H, Gropp S (1965) Comparison of the staining properties of collagen fibers in hepatic cirrhosis and young physiological collagen. Lab Invest 14: 577Google Scholar
  180. Siegfried M (1892) fiber die chemischen Eigenschaften des reticulierten Gewebes. Brockhaus, LeipzigGoogle Scholar
  181. Sirsat SM, Khanolkar VR (1962) Structural alterations of collagen in diseased states. In: Ramanathan N (ed) Collagen. Interscience, New York, pp 327–349Google Scholar
  182. Smith EJ, Puchtler H, Sweat F (1966) Investigation of the chemical mechanism of trichrome stains. Lab Invest 15: 1141–1142Google Scholar
  183. Sokoloff N (1888) tiber die venose Hyperiimie der Milz. Virchows Arch 112: 209–236Google Scholar
  184. Spaet TH, Tiell ML, Cintron JR, Won J (1980) Can selective arterial medial injury produce intimal hyperplasia? Fed Proc 39: 1071Google Scholar
  185. Stadler R, Orfanos CL (1978) Reifung und Alterung der elastischen Fasern. Arch Dermatol Res 262: 97–111PubMedGoogle Scholar
  186. Sumner HH (1964) Dyeing theory. Rev Text Prog 16: 255–270Google Scholar
  187. Sweat F, Puchtler H (1964) On a side effect of the acetic acid solvent in the phenylhydrazine procedure for the blocking of carbonyl groups. J Histochem Cytochem 12: 392Google Scholar
  188. Sweat F, Puchtler H, Rosenthal SI (1964a) Sirius Red F3BA as a stain for connective tissue. Arch Pathol 78: 69–72Google Scholar
  189. Sweat F, Puchtler H, Woo P (1964b) A light-fast modification of Lillie's allochrome stain. Arch Pathol 78: 73–75Google Scholar
  190. Sweat F, Meloan SN, Puchtler H (1968) A modified one-step trichrome stain for demonstration of fine connective tissue fibers. Stain Technol 43: 227–231Google Scholar
  191. Talma S (1879) Ueber Endarteriitis chronica. Virchows Arch 77: 242–268Google Scholar
  192. Thoma R (1883) Ueber die Abhangigkeit der Bindegewebsneubildung in der Arterienintima von den mechanischen Bedingungen des Blutumlaufs. Virchows Arch 93: 443–505Google Scholar
  193. Thoma R (1891) Ueber Gefiiss- und Bindegewebsneubildung in der Arterienwand. Beitr pathol Anat Allg Pathol 10: 433–448Google Scholar
  194. Thome R (1901) Die Kreisfasern der capillaren Venen in der Milz. Anat Anz 19: 271–280Google Scholar
  195. Toldt C (1884) Lehrbuch der Gewebelehre, 2nd edn. Enke, StuttgartGoogle Scholar
  196. Trompetter J (1876) Ueber Endarteriitis. Georgi, BonnGoogle Scholar
  197. Tunbridge RE (1956) The relationship of elastin and collagen (morphological studies). Experientia Suppl 4: 15–18Google Scholar
  198. Tunbridge RE (1957) The Heberden oration. Lancet 272: 29Google Scholar
  199. Tunbridge RE, Tattersall RN, Hall DA, Astbury WT, Reed R (1952) The fibrous structure of normal and abnormal human skin. Clin Sci 11: 315–323PubMedGoogle Scholar
  200. Unna PG (1890) Uber die Taenzersche Orceinfarbung des elastischen Gewebes. Monatsh Prakt Dermat 12: 366–367Google Scholar
  201. Unna PG (1891) Notiz betreffend die Tanzersche Orceinfarbung des elastischen Gewebes. Monatsh Prakt Dermat 12: 394–396Google Scholar
  202. Unna PG (1894a) Basophiles Kollagen, Kollastin und Kollacin. Monatsh Prakt Dermat 19: 465–475Google Scholar
  203. Unna PG (1894b) Die spezifische Farbung des Kollagens. Monatsh Prakt Dermat 18: 509–520Google Scholar
  204. Velican C (1962) Biology of the sclerotic process. Part VIII. Morfol Norm Patol (Bucharest) 7: 373–378Google Scholar
  205. Verhoeff FH (1908) Some new staining methods of wide applicability; including a rapid differential stain for elastic tissue. J Am Med Assoc 50: 876–877Google Scholar
  206. Vickerstaff T (1954) Dye structure and affinity. In: The physical chemistry of dyeing. Oliver and Boyd, London, pp 412–415Google Scholar
  207. Virchow R (1856) Gesammelte Abhandlungen zur wissenschaftlichen Medizin. Meidinger, Frankfurt, pp 492–507Google Scholar
  208. von Czyhlarz ER (1897) Ueber ein Pulsionsdivertikel der Trachea. Centralbl AUg Pathol Anat 8: 721–728Google Scholar
  209. von Denffer H, Heidbrink V (1974) Dunnschichtchromatographische Untersuchungen verschiedener Aldehydefuchsine. Acta Histochem (Jena) 48: 62–68Google Scholar
  210. von Ebner V (1902) A. Koelliker's Handbuch der Gewebelehre, Vol 3, 6th edn. Engelmann, Leip zigGoogle Scholar
  211. von Recklinghausen F (1862) Die Lymphgefasse und ihre Beziehungen zum Bindegewebe. Hirschwald, BerlinGoogle Scholar
  212. von Richter V (1899) Organic chemistry, 3rd American from 8th German edn. Blakiston, PhiladelphiaGoogle Scholar
  213. von Winiwarter F (1879) Ueber eine eigentumliche Form von Endarteriitis und Endophlebitis mit Gangran des Fusses. Langenbecks Arch Chir 23: 202–226Google Scholar
  214. von Zwingmann A (1891) Das elastische Gewebe der Aortenwand und seine Veranderungen bei Sklerose und Aneurysma. Schnakenburg, DorpatGoogle Scholar
  215. Waldrop FS, Puchtler H, Valentine LS (1971) Histochemical studies of myoendothelial cells and their role in collagen formation in early arteriosclerosis. J Reticuloendothel Soc 9: 632–633Google Scholar
  216. Waldrop FS, Meloan SN, Puchtler H, Pollard GR (1977) Histochemical demonstration of different collagens in arteriosclerosis and other sites of collagen formation. Lab Invest 36: 351–352Google Scholar
  217. Waldrop FS, Younker TD, Puchtler H (1979) Effects of dye structure and solvents on the binding of premetallized dyes. Ga J Sci 37: 107Google Scholar
  218. Waldrop FS, Younker TD, Puchtler H (1980) New methods for distinction between elastin and collastin. Anat Rec 196: 251Google Scholar
  219. Waller J, Lewis GW (1957) Dyeing. Rev Text Prog 9: 328–357Google Scholar
  220. Waterman N (1908) Einige Bermerkungen zur Frage: Arteriosklerose nach Adrenalin-Injektion. Virchows Arch 191: 202–208Google Scholar
  221. Weigert C (1898) Ueber eine Methode zur Farbung elastischer Fasern. Centralbl Allg Pathol Pathol Anat 9: 289–292Google Scholar
  222. Wells HG (1933) The chemistry of arteriosclerosis. In: Cowdry EV (ed) Arteriosclerosis. MacMillan, New York, pp 323–353Google Scholar
  223. Westphalen H (1886) Histologische Untersuchungen tiber den Bau einiger Arterien. Mattiesen, DorpatGoogle Scholar
  224. Windrum GM, Kent PW, Eastoe JE (1955) The constitution of human renal reticulin. Br J Exp Pat hoi 36: 49–59Google Scholar
  225. Wissler RW (1968) The arterial medial cell, smooth muscle or multifunctional mesenchyme. J Atheroscler Res 8: 201–213Google Scholar
  226. Witthaus RA (1887) The medical student's manual of chemistry, 2nd edn. Wood, New YorkGoogle Scholar
  227. Wolff CK (1928) Elastica und Pseudoelastica der grossen Arterien. Virchows Arch 270: 37–50Google Scholar
  228. Wolff I, Fuchswans W, Weiser M, Furthmayr H, Timpl R (1971) Acidic structural proteins of connective tissue: characterization of their heterogeneous nature. Eur J Biochem 20: 426–431PubMedGoogle Scholar
  229. Young LA (1892) The fibres of retiform tissue. J Physiol 13: 332–334PubMedGoogle Scholar
  230. Younker TD, Waldrop FS, Puchtler H (1978) Dye binding by collagens and elastin: effects of dye configurations and solvents. J SC Med Assoc 74: 59Google Scholar
  231. Younker TD, Waldrop FS, Puchtler H (1980) Investigation of elastin and collastin in human lungs. Anat Rec 196: 253Google Scholar
  232. Yu SY, Still MF (1977) Ultrastructural changes of elastic tissue in hamster lung during elastase-emphysema. In: Sandberg LB, Gray WR, Franzblau C (eds) Elastin and elastic tissue. Plenum, New York-London, pp 39–56Google Scholar
  233. Zacharjewskaja MA (1930) Klinische und histologische Untersuchungen iiber die Arteriosklerose der Nieren. Virchows Arch 276: 380–446Google Scholar
  234. Zahn FW (1884) Untersuchung iiber die Vernarbung von Querrissen der Arterienintima und Media nach vorheriger Umschniirung. Virchows Arch 96: 1–15Google Scholar
  235. Zimmermann KW (1898) Beitrage zur Kenntnis einiger Drusen und Epithelien. Arch Mikrosk Anat Entwicklungsgesch 52: 552–706Google Scholar
  236. Zollinger H (1965) The dye and the substrate: the role of hydrophobic bonding in dyeing process'es. J Soc Dyers Colour 81: 345–350Google Scholar
  237. Zollikofer H (1852) Beitrage zur Kenntnis des elastischen Gewebes. Justus Liebigs Ann Chern 82: 162–180Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1981

Authors and Affiliations

  • Holde Puchtler
  • Faye Sweat Waldrop
  • Susan N. Meloan

There are no affiliations available

Personalised recommendations