Structure and Function of Aorta Proteoglycan

  • Theodore R OegemaJr.


Ever since the extracellular matrix was first viewed through early microscopes, the matrix has been the subject of much speculation and its components the bearers of such fanciful names as amorphous ground substance. In recent years, major strides have been made in the development of methods to study the matrix. They include new techniques for exploring the biochemistry of two major components of the matrix, collagen and proteoglycan; advances in methods for culturing cells from these tissues; and new staining and other microscopic procedures for viewing the tissue and localizing the components. This multidiscipline approach is now in the process of revolutionizing the understanding of connective tissue structure and metabolism. This discussion outlines the current status of a study of proteoglycan structure and speculates on possible relationships to function in aorta.


Hyaluronic Acid Dermatan Sulfate Keratan Sulfate Link Protein Sulfate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams P, Muir H (1976) Quantitative changes with age of proteoglycans of human lumbar disc. Ann Rheum Dis 35: 289–296PubMedCrossRefGoogle Scholar
  2. Antonopoulos CA, Axelsson I, Heinegard A, Gardell S (1974) Extraction and purification of proteoglycans from various types of connective tissue. Biochim Biophys Acta 338: pp108-119Google Scholar
  3. Axelsson I, Heinegard D (1978) Characterization of keratan sulfate proteoglycans from bovine corneal stroma. Biochem J 169:517–530PubMedGoogle Scholar
  4. Balazs EA, Bothner-By AA, Gergely J (1959) PMR studies on water in the presence of various macromolecular substances. J Mol Biol 1: 147–154CrossRefGoogle Scholar
  5. Baker JR, Caterson B (1977) The purification and cyanogen bromide cleavage of the “link proteins” from cartilage proteoglycans. Biochem Biophys Res Commun 80: 496–503Google Scholar
  6. Baker JR, Caterson B (1979) The isolation and characterization of the link proteins from proteoglycan aggregates of bovine nasal cartilage. J BioI Chern 254: 2387–2393Google Scholar
  7. Baker JR, Cifonelli JA, Roden L (1975) The linkage of corneal keratan sulfate to protein. Connect Tiss Res 3: 149–156Google Scholar
  8. Barber AJ, Kaser-Glanzmann R, Jakabova M, Luscher EF (1972) Characterization of a chondroitin-4-sulfate proteoglycan carrier for heparin neutralizing activity (platelet factor 4) released from human blood platelets. Biochim Biophys Acta 286:312–329PubMedGoogle Scholar
  9. Bettelheim FA, Plessy B (1975) The hydration of proteoglycans of bovine cornea. Biochim Biophys Acta 381:203–214PubMedGoogle Scholar
  10. Bradford-White CJ (1978) Molecular organization of heparan sulfate proteoglycan from human dentine. Arch Oral Biol 23: 1141–1144CrossRefGoogle Scholar
  11. Burke JM, Ross R (1979) Synthesis of connective tissue macromolecules by smooth muscle. Int Rev Connect Tiss 8:119–157Google Scholar
  12. Caterson B, Baker JR (1978) The interaction of link proteins with proteoglycan monomer in the absence of hyaluronic acid. Biochem Biophys Res Commun 80: 496–503PubMedCrossRefGoogle Scholar
  13. Chandrasekaran EV, Spolter L, Marx W (1975) Proteoglycans of soluble fraction of mouse mastocytoma. Prep Biochem 5: 281–303PubMedCrossRefGoogle Scholar
  14. Choi HO, Meyer K (1975) The structure of keratan sulfate from various sources. Biochem J 151: 543–553PubMedGoogle Scholar
  15. Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiolog Rev 58: 255–315Google Scholar
  16. Coster L, Carlstedt I, Malmstrom A (1979) Isolation of 35S and 3H-labeled proteoglycans from cultures of human embryonic skin fibroblasts. Biochem J 183: 669–681PubMedGoogle Scholar
  17. Cuervo LA, Pita JC, Howell DS (1973) Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph. Calc Tiss Res 13: 1–10CrossRefGoogle Scholar
  18. Damle SP, Kieras FJ, Tzeng W-K, Gregory JD (1979) Isolation and characterization of proteochondroitin sulfate from pig skin.J Biol Chem 254: 1613–1620Google Scholar
  19. Danielsson A, Bjole I (1978) The binding of low-affinity and high-affinity heparin to antithrombin. Eur J Biochem 90: 7–12PubMedCrossRefGoogle Scholar
  20. DeLuca S, Caplan AI, Hascall VC (1978) Biosynthesis of proteoglycans by chick limb bud chondrocytes.J Biol Chem 253:4713–4720Google Scholar
  21. DeLuca S, Lohmander LS, Nilsson B, Hascall VC, Caplan AI (1980) Proteoglycans from chick limb bud chondrocyte cultures.J Biol Chem 255: 6077–6083Google Scholar
  22. Deudon E, Picard J (1978) Metabolic heterogeneity of proteoglycans from arterial wall. Int J Biochem 9: 19–26PubMedCrossRefGoogle Scholar
  23. Ehrlich KC, Radhakrishnamurthy B, Berenson GS (1975) Isolationof a chondroitin sulfate-dermatan sulfate proteoglycan from bovine aorta. Arch Biochem Biophys 171: 361–369PubMedCrossRefGoogle Scholar
  24. Eisenstein R (1979) Vascular extracellular tissue and atherosclerosis. Artery 5: 207–221PubMedGoogle Scholar
  25. Eisenstein R, Kuettner KE (1976) The ground substance of arterial wall. Part 2, Electron microscopic studies. Atherosclerosis 24: 37–46PubMedCrossRefGoogle Scholar
  26. Eisenstein R, Larsson SE, Kuettner KE, Sorgente N, Hascall VC (1975) The ground substance of arterial wall. Part 1. Extractability of glycosaminoglycans and the isolation of a proteoglycan from bovine aorta. Atherosclerosis 22: 1–17PubMedCrossRefGoogle Scholar
  27. Emes JH, Pearce RH (1975) The proteoglycans of the human intervertebral disc. Biochem J 145: 549–556PubMedGoogle Scholar
  28. Faltz LL, Caputo CB, Kimura JH, Schrode J, Hascall VC (1979) Structure of the complex between hyaluronic acid, the hyaluronic acid-binding region, and the link protein of proteoglycan aggregates from the Swarm rat chondrosarcoma. J Biol Chern 254: 1381–1387Google Scholar
  29. Finne J, Krusius T, Margolis RK, Margolis RU (1979) Novel mannitol-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfated proteoglycan from brain. J Biol Chern 254: 10295–10300Google Scholar
  30. Fransson LA (1976) Interactions between dermatan sulfate chains. I. Affinity chromatography of copolymeric galactosaminoglycans on dermatan sulfate-substituted agarose. Biochim Biophys Acta 437: 100–115Google Scholar
  31. Gamse G, Fromme HG, Kresse H (1978) Metabolism of sulfated glycosaminoglycans in cultured endothelial cells and smooth muscle cell from bovine aorta. Biochim Biophys Acta 544:514–528PubMedGoogle Scholar
  32. Gardell S, Baker JR, Caterson B, Heinegard D, Roden L (1980)Link protein and hyaluronic acid-binding region on components of aorta proteoglycan. tiBiochem Biophys Res Commun (in press)Google Scholar
  33. Gelman RA, Blackwell J (1974) Collagen-mucopolysaccharide interaction at acid pH. Biochim Biophys Acta 342: 254–261PubMedGoogle Scholar
  34. Glaser JH, Conrad HE (1979) Chondroitin SO4 catabolism in chick embryo chondrocytes. J Biol Chem 254: 2316–2325PubMedGoogle Scholar
  35. Glatz CE, Massaro TA (1976a) Influence of glycosaminoglycan content on mass transfer behavior of porcine artery wall. Part 1. Diffusive transport of 45Ca+2 and 3H HO. Atherosclerosis 25: 153–163PubMedCrossRefGoogle Scholar
  36. Glatz CE, Massaro TA (1976b) Influence of glycosaminoglycan content on mass transfer behavior of porcine artery wall. Part 2. Differences in mass transfer rates related to variations in glycosaminoglycan content. Atherosclerosis 25: 165–173PubMedCrossRefGoogle Scholar
  37. Greenwald RA, Schwartz CE (1974) Complex formation between lysozyme and cartilage proteoglycans. Biochim Biophys Acta359: 66–74PubMedGoogle Scholar
  38. Hart GW, Lennartz WJ (1978) Effects of tunicamycin on the biosynthesis of glycosaminoglycans by embryonic chick cornea. J Biol Chem 253: 5795–5801PubMedGoogle Scholar
  39. Hascall VC (1977) Interaction of cartilage proteoglycans with hyaluronic acid. J Supramol Struct 7: 101–120PubMedCrossRefGoogle Scholar
  40. Hascall VC, Oegema TR, Brown M, Caplan AI (1976) Isolation and characterization of proteoglycans from chick limb bud chondrocytes grown in vitro. J Biol Chem 251: 3511–3519Google Scholar
  41. Hascall VC, Riolo RL (1972) Characterization of the protein-keratan sulfate core and keratan sulfate prepared from bovine nasal cartilage proteoglycan. J Biol Chem 247: 4529–4538PubMedGoogle Scholar
  42. Hascall VC, Sajdera SW (1970) Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J Biol Chern 245: 4920–4930Google Scholar
  43. Hassell JR, Newsome DA, Hascall VC (1979) Characterization and biosynthesis of proteoglycan of corneal stroma from Rhesus monkey. J Biol Chern 254: 12346–12354Google Scholar
  44. Hedbys BO, Mishima S (1962) Flow of water in the corneal stroma. Exp Eye Res 1: 262–275PubMedCrossRefGoogle Scholar
  45. Heinegard D, Axelsson I (1977) The distribution of keratan sulfate in cartilage proteoglycans. J Biol Chern 252: pp1971-1979Google Scholar
  46. Heinegard D, Hascall VC (1974a) Aggregation of proteolgycans III. Characteristics of proteins isolated from trypsin digests of aggregates. J Biol Chern 249: 4250–4256Google Scholar
  47. Heinegard D, Hascall VC (1974b) Characterization of chondroitin sulfate isolated from trypsin-chymotrypsin digests of cartilage proteoglycans. Arch Biochem Biophys 165: 424–441CrossRefGoogle Scholar
  48. Heinegard D, Hascall VC (1979a) Characteristics of the nonaggregating proteoglycans isolated from bovine nasal cartilage. J Biol Chern 254: 927–934Google Scholar
  49. Heinegard D, Hascall VC (1979b) The effects of dansylation and acetylation on the interaction between hyaluronic acid and the hyaluronic acid-binding region of cartilage proteoglycan. J Biol Chern 254: 921-926Google Scholar
  50. Iverius PH (1972) The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J Biol Chern 247: 2607–2613Google Scholar
  51. Junqueira LCU, Bignolas G, Maurao PAS, Bonetti SS (1980) Quantitation of collagen-proteoglycan interaction in tissue sections. Connect Tiss Res 7: 91–96CrossRefGoogle Scholar
  52. Kieras FJ (1974) The linkage regions of cartilage keratan sulfate protein. J BioI Chern 249: 7506–7513Google Scholar
  53. Kimata K, Oike Y, Ito K, Karasaw K, Suzuki S (1978) The occurrence of low buoyant density proteoglycan in embryonic chick cartilage. Biochem Biophys Res Commun 85: 1431–1439PubMedCrossRefGoogle Scholar
  54. Kimura JH, Hardingham TE, Hascall VC, Solurs M (1979) Biosynthesis of proteoglycans and their assembly into aggregates in cultures of chondrocytes from the Swarm rat chondrosarcoma.J Biol Chern 254: 2600–2609Google Scholar
  55. Kimura JH, Osdoby P, Caplan AI, Hascall VC (1978) Electron miscroscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J Biol Chern 253: 4721–4729Google Scholar
  56. Kresse H, Heidel H, Buddecke E (1971) Chemical and metabolic heterogeneity of a bovine aorta chondroitin sulfate dermatan sulfate proteoglycan. Eur J Biochem 22: 557–562PubMedCrossRefGoogle Scholar
  57. Larjava H, Saarni H, Tammi M, Penttinen R, Ronnemaa T (1980) Cortisol decreases the synthesis of hyaluronic acid by human aortic smooth muscle cells in culture. Athersclerosis 35: 135–143CrossRefGoogle Scholar
  58. Laurent TC (1957) On the hydration of macromolecules, x-ray diffraction studies on aqueous solutions of hyaluronic acid. Arkiv Kemi 11: 503–512Google Scholar
  59. Laurent TC, Tengblad A, Thunberg L, Hook M, Lindahl U (1978) The molecular-weight-dependence of the anti-coagulent activity of heparin. Biochem J 175: 691–701PubMedGoogle Scholar
  60. Linn CF, Sokoloff L (1965) Movement and composition of interstitial fluid of cartilage. Arth and Rheum 8: 481–494CrossRefGoogle Scholar
  61. Lohmander LS, DeLuca S, Nilsson B, Hascall VC, Caputo CB, Kimura JH, Heinegard D (1980) Oligosaccharides on proteoglycans from the Swarm rat chondrosarcoma. J Biol Chern 255: 6084–6091Google Scholar
  62. Lohmander LS, Hascall VC, Caplan AI (1979) Effects of 4-methylumbelliferyl-e-D-xylopyranoside on chondrogenesis and proteoglycan synthesis in chick limb bud mesenchymal cell cultures. J Biol Chern 254: 10551–10561Google Scholar
  63. MacGregor EA, Bowness JM (1971) Interactions of proteoglycans and chondroitin sulfate with calcium or phosphate ions. Can J Biochem 49: 417–425PubMedGoogle Scholar
  64. Malmstrüm A, Roden L, Feingold DS, Jacobsson I, Backstrom G, Lindahl U (1980) Biosynthesis of heparin partical purification of a uronosyl C-5 epimerase. J Biol Chern 255: 3878–3883Google Scholar
  65. Margolis RU, Lalley K, Kiang W-L, Crockett C, Margolis RK (1976) Isolation and properties of a soluble chondroitin sulfate proteoglycan from brain. Biochem Biophys Res Comm 73: 1018–1024PubMedCrossRefGoogle Scholar
  66. Maroudas A (1970) Distribution and diffusion of solutes in articular cartilage. Biophys J 10: 365–379PubMedCrossRefGoogle Scholar
  67. Massaro TA, Glatz CE, Peppas NA, Chisolm GM, Colton CK (1979) Distribution of glycosaminoglycans in consecutive layers of the rabbit aorta. Artery 5: 1-13Google Scholar
  68. Mathews MB (1970) Binding of calcium to proteoglycan of chondroitin sulfate. In: Bulazs EA (ed) Chemistry and Molecular Biology of the Intracellular Matrix. Academic Press, New York, pp. 1121–1123Google Scholar
  69. McMurtre J, Radharishnamurthy B, Dalenes ER, Berenson GS, Gregory JD (1979) Isolation of proteoglycan-hyaluronate complexes from bovine aorta. J Biol Chern 254: 1621-1626Google Scholar
  70. Merrilees MJ, Merrilees MA, Birnbaum PS, Scott PJ, Flint MH (1977) The effect of centrifugal force on glycosaminoglycan production by aortic smooth cells in culture. Atherosclerosis 27: 259–264PubMedCrossRefGoogle Scholar
  71. Murata K (1978) Differences in the constitution and distribution of acidic glycosaminoglycans in the intimal and adventitial layers of bovine aorta. Connect Tiss Res 6: 131–138CrossRefGoogle Scholar
  72. Murata K, Izuka K, Nakazawa K (1978) Effects of acidic glycosaminoglycans in human aortic inner and outer layers on partial thromboplastin time. Atherosclerosis 29: 95–104PubMedCrossRefGoogle Scholar
  73. Mutoh S, Funakoski I, Yamashina I (1978) Isolation and characterization of proteoheparan sulfate from plasma membranes of an ascites hepatoma AH66. J Biochem Tokyo 84: 483–489PubMedGoogle Scholar
  74. Nakamura H, Nagai Y (1979) Isolation and partial characterization of low sulfated chondroitin 4-sulfate-proteoglycan in bovine blood.Biochim Biophys Acta 579: 361–371Google Scholar
  75. Norling B, Glimerius B, Westermark B, Wasteson Å (1978) A chondroitin sulfate proteoglycan from human cultured glial cell aggregates with hyaluronic acid. Biochem Biophys Res Comm 84: 914–921PubMedCrossRefGoogle Scholar
  76. Öbrink B (1972) Isolation and partial characterization of a dermatan sulfate proteoglycan from pig skin. Biochim Biophys Acta 264: 354–361PubMedGoogle Scholar
  77. Öbrink B (1973) A study of the interactions between monomeric trophocollagen and glycosaminoglycans. Eur J Biochem 33: 387–400PubMedCrossRefGoogle Scholar
  78. Öbrink B, Laurent TC, Carlsson B (1975) The binding of chondroitin sulfate to collagen. Fed Eur Biochem Soc Lett 56: 166–CrossRefGoogle Scholar
  79. Öbrink B, Sundelof L-0 (1973) Light-scattering in the study of associating macromolecules. The binding of glycosaminoglycan to collagen. Eur J Biochem 37: 226–232PubMedCrossRefGoogle Scholar
  80. Oegema TR, Bradford DS, Cooper KM (1979) Aggregated proteoglycan synthesis in organ cultures of human nucleus pulposis. J BioI Chern 254: 10579–10581Google Scholar
  81. Oegema TR, Brown M, Dziewiatkowski DD (1977) The link protein in proteoglycan aggregates from the Swarm rat chondrosarcoma. J Biol Chem 252: 6470–6477PubMedGoogle Scholar
  82. Oegema TR, Hascall YC, Dziewiatkowski DD (1975) Isolation and characterization of proteoglycans from the Swarm rat chondrosarcoma. J Biol Chem 250: 6151–6159PubMedGoogle Scholar
  83. Oegema TR, Hascall YC, Eisenstein R (1979) Characteristics of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J Biol Chem 254: 1312–1318PubMedGoogle Scholar
  84. Oegema TR, Laidlaw J, Hascall VC, Dziewiatkowski DD (1975) The effects of proteoglycans on the formation of fibrils from collagen solutions. Arch Biochem Biophys 170: 698–709PubMedCrossRefGoogle Scholar
  85. Ogston AG (1966) On water binding. Fed Proc 25: 986–989PubMedGoogle Scholar
  86. Oldberg Ȧ, Kjellen L, Höök M (1979) Cell-surface heparan sulfate isolation and characterization of a proteoglycan from rat liver membrane. J Biol Chern 254: 8505–9510Google Scholar
  87. Pearce RH, Grimmer RJ (1970) The nature of ground substances. In: Montagna W, Bentley JP, Dobson RL (eds) Advances in Biology of Skin, Appleton, New York, Vol. X, pp 89–101Google Scholar
  88. Philip B, Kurup PA (1977) Zinc and metabolism of glycosaminoglycans in normal and atherosclerosic rats. Ind J Biochem Biophys 14: 354–358Google Scholar
  89. Pita JC, Muller FJ, Morales SM, Alarcon EJ (1979) Ultracentrifugal characterization of proteoglycans from rat growth cartilages. J Biol Chern 254: 10313–10320Google Scholar
  90. Radhakrishnamurthy B, Ruiz H, Berenson GS (1977 a) Interactions of glycosaminoglycans with collagenase elastin in bovine aorta. Adv Exp Med Biol 82: 160–163PubMedGoogle Scholar
  91. Radhakrishnamurthy B, Ruiz HA, Berenson GS (1977b) Isolation and characterization of proteolgycans from bovine aorta. J Biol Chern 252: 4831–4841Google Scholar
  92. Radhakrishnamurthy B, Ruiz HA, Dalferes ER, Friedman M, Seethanathan P, Berenson GS (1978) Connective tissue composition of aortas from non-human primates: a comparative study. Atherosclerosis 29: 25–38PubMedCrossRefGoogle Scholar
  93. Richmond ME, DeLuca S, Silbert JE (1973) Biosynthesis of chondroitin sulfate, microsomal acceptor of sulfate, glucuronic acid and N-acetylgalactosamine. Biochem 12: 3898–3903Google Scholar
  94. Robinson HC, Horner AA, Höök M, Ogren S, Lindahl U (1978) A proteoglycan form of heparin and it’s degradation to singlechain molecules. J Biol Chern 253: 6687–6693Google Scholar
  95. Roden L, Baker JR, Helting T, Schwartz NB, Stoolmiller AC, Yamagata S, Yamagata T (1972) Biosynthesis of chondroitin sulfate. Methods of Enzymol 28: 638–676CrossRefGoogle Scholar
  96. Roden L, Horowitz MI (1978) Structure and biosynthesis of connective tissue proteoglycans. In: Horowitz MI, Pigman W (eds) The Glycoconjugates, Academic Press, New York, Vol. II, pp 3–71Google Scholar
  97. Rokosova B, Bentley JP (1979) Biosynthesis of aorta collagen and glycosaminoglycans following immunological injury. Atherosclerosis 32: 359–365PubMedCrossRefGoogle Scholar
  98. Sandy JD, Brown HLG, Lowther DA (1978) Degradation of proteoglycans in articular cartilage. Biochim Biophys Acta 543: 536–544PubMedGoogle Scholar
  99. Sheehan JK, Nieduskynaki IA, Phelps CF, Muir H, Hardingham TE (1978) Self-association of proteoglycan subunits from pig larynegeal cartilage. Biochem J 171: 109–114PubMedGoogle Scholar
  100. Sirek OV, Cukerman E, Sirek A (1978) The relationship of hormones to arterial glycosaminoglycans and atherosclerosis. Med Hypothesis 4: 531–539CrossRefGoogle Scholar
  101. Stevens RL, Binette JP, Kimura A, Nimberg RB, Schmid K (1977) A low molecular weight glycosaminoglycan from the human aorta. Experientia 33: 1282–1283PubMedCrossRefGoogle Scholar
  102. Stevens RL, Colombo M, Gonzales6JJ, Hollander W, Schmid K (1976) The glycosaminoglycan of the human artery and their changes in atherosclerosis. J Clin Invest 58: 470–481PubMedCrossRefGoogle Scholar
  103. Stevens RL, Ewins RJF, Revell PA, Muir H (1979) Proteoglycans of the intervertebral disc: Homology of structure with laryngeal proteoglycans. Biochem J 179: 561–572PubMedGoogle Scholar
  104. Tammi M, Ronnema A, Vihersaari T, Lehtonen A, Vhkari J (1979) High density lipoproteinemia due to vigorous physical work inhibits the incorporation of 3H thymidine and synthesis of glycosaminoglycans by human aortic smooth muscle cells in culture. Atherosclerosis 32: 23–32PubMedCrossRefGoogle Scholar
  105. Toledo OMS, Mauras PAS (1979) Sulfated glycosaminoglycans of human aorta; chondroitin 6-sulfate increase with age. Biochern Biophys Res Commun 89: 50–55CrossRefGoogle Scholar
  106. Toole BP, Lowther DA (1968) Dermatan sulfate-protein: Isolation from and interaction with collagen. Arch Biochem Biophys 128: 567–578PubMedCrossRefGoogle Scholar
  107. Truppe W, Kresse H (1978) Uptake of proteoglycans and sulfated glycosaminoglycans by cultured skin fibroblasts. Eur J Biochern 85: 351–358CrossRefGoogle Scholar
  108. Ts’ao C-H, Eisenstein R, Schumacker B (1977) Effect of an aortic proteoglycan on platelet aggregation and thrombin time: Plasma requirement and active moieties. Proc Soc Expt’l Biol Med 156: 162–167Google Scholar
  109. Upholt WB, Vertel BM, Dorfman A (1979) Characterization of messenger RNA’s in differentiating chicken cartilage. Proc Natl Acad Sci USA 79: 4847–4851CrossRefGoogle Scholar
  110. Verlangieri AJ, Stevens JW (1979) L ascorbic acid: Effects on aortic glycosaminoglycan 35S incorporation in rabbit induced atherogenesis. Blood Vessels 16: 177–185PubMedGoogle Scholar
  111. Vijayagopal P, Radhakrishnamurthy B, Srinivasan SR, McMurtney J, Berenson GS (1980) Proteoglycan synthesis and secretion by bovine aorta tissue in organ culture. Artery 6: 458–470PubMedGoogle Scholar
  112. Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in rat. Connect Tiss Res 6: 161–166CrossRefGoogle Scholar
  113. vonFigura K, Kioloski W, Buddeke E (1975) Metabolic characteristics of different types of chondroitin sulfate-dermatan sulfate hybrids in arterial tissue. Hoppe Seyler Z Physiol Chern356: 1517–1525CrossRefGoogle Scholar
  114. Wagner WD, Salisbury BGJ (1978) Aortic total glycosaminoglycan and dermatan sulfate changes in atherosclerotic rhesus monkeys. Lab Invest 39: 322–328PubMedGoogle Scholar
  115. Wiederhielm CA (1972) The interstitial space. In: Fung YC, Perrone N, Anliker M, (eds) Biomechanics in Foundation and Objectives. Prentice Hall, Englewood Cliff, New Jersey, pp273–286Google Scholar
  116. Wight TN (1980) Vessel proteoglycans and thrombogenesis. In: Spaet TH (ed) Progress in Hemostasis and Thrombosis. Grune and Stratton, Inc. Vol. 5: 1–39Google Scholar
  117. Wight TN, Ross R (1975) Proteoglycans in primate arteries. I. ultrastructural localization and distribution in the intima. J Cell Biol 67: 660–674PubMedCrossRefGoogle Scholar
  118. Yanagishita M, Hascall VC (1979) Biosynthesis of proteoglycans by rat granulosa cell culture in vitro. J Biol Chem 254: 12355–12364PubMedGoogle Scholar
  119. Yanagishita M, Rodhand D, Hascall VC (1979) Isolation and characterization of proteoglycans from porcine ovarian follicular fluid. J Biol Chem 254: 911–920PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1981

Authors and Affiliations

  • Theodore R OegemaJr.

There are no affiliations available

Personalised recommendations