Skip to main content

Mechanism of Cell Shape Determination in Teleost Retinal Cones

  • Chapter

Part of the book series: Ocular Size and Shape ((EYE))

Abstract

Cell shape change plays a fundamental role in morphogenesis and cell movement. Other papers in this symposium have described several examples in which cell shape change contributes to eye development. In this review, I wish to call attention to special aspects of cell shape change pertinent to photoreceptors. Unlike the other examples in this symposium, photoreceptor morphogenesis entails much more complex shaping than the elongation and apical constriction of columnar epithelial cells. During morphogenesis a part of the photoreceptor cell extends into the subretinal space and somehow sculpts itself into the complex and specific shapes of inner and outer segments. Similarly, the unique shapes of the rod and cone axons and synapses develop within the outer nuclear layer. Thus we must look to mechanisms of shape determination more local and more specific than the growth pressures and packing considerations which influence epithelial morphogenesis. Though we do not yet fully understand how such detailed, specific shaping is achieved, we are now beginning to comprehend the basic mechanisms which cells employ to change their shapes. Active cell shape change may be viewed as the result of two basic cellular processes: contraction and elongation. By the subtle combination of these two processes, even intricate cell shapes can be achieved. In the following discussion, I will consider possible mechanisms of contraction and elongation separately. They may not, however, be mutually exclusive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein, R. S. 1978. Myosin phosphorylation, cell motility and smooth muscle contraction. Trends in Biol. Sci. 3; 27–29.

    Article  CAS  Google Scholar 

  • Ali, M. A. 1975. Retinomotor responses. In “Vision in Fishes” (M. A. Ali, ed.). NATO Adv. Study Ins. pp. 313-355.

    Google Scholar 

  • Arronet, N. I. 1973. “Motile Muscle and Cell Models.” Consultants Bureau, New York.’ 348 pp.

    Google Scholar 

  • Beebe, D. C, D. E. Feagans, J. Blanchette-Mackie, and M. Nau. 1979. Lens epithelial cell elongation in the absence of microtubules: Evidence for a new effect of colchicine. Science 206; 836–839.

    Article  PubMed  CAS  Google Scholar 

  • Borisy, G. G., K. A. Johnson, and J. M. Marcum. 1976. Self-assembly and site-initiated assembly of microtubules. In “Cell Motility” (R. Goldman, T. D. Pollard, and J. L. Rosenbaum, eds.). Cold Spring Harbor, New York. pp. 1093–1108.

    Google Scholar 

  • Burnside, B. 1973. Microtubules and microfilaments in amphibian neurulation. Amer. Zool. 13; 989–1006.

    Google Scholar 

  • Burnside, B. 1976. Microtubules and actin filaments in teleost visual cone elongation and contraction. J. Supramolecular Structure 5; 257–275.

    Article  CAS  Google Scholar 

  • Burnside, 1978. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina. J. Cell Biol. 78; 227–246.

    Article  PubMed  CAS  Google Scholar 

  • Cande, W. Z. and S. M. Wolniak. 1978. Chromosome movement in lysed mitotic cells is inhibited by vanadate. J. Cell Biol. 79; 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Cantley, L. C, L. Josephson, R. Warner, M. Yanagisawa, L. Echene, and G. Guidotti. 1977. Vanadate is a potent (Na, K) — ATPase inhibitor found in ATP derived from muscle. J. Biol. Chem. 252; 7421–7423.

    PubMed  CAS  Google Scholar 

  • Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207; 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. and J. A. Spudich. 1977. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Ann. Rev. Biochem. 46; 797–822.

    Article  PubMed  CAS  Google Scholar 

  • Dedman, J. R., B. R. Brinkley, and A. R. Means. 1979. Regulation of microfilaments and microtubules by calcium and cyclic AMP. Advances in Cyclic Nucleotide Research. 11; 131–174.

    PubMed  CAS  Google Scholar 

  • Dustin, P. 1978. “Microtubules.” Springer-Verlag, Berlin. 452 pp.

    Google Scholar 

  • Goldman, R. D., J. A. Schloss, and J. M. Starger. 1976. Organizational changes of actinlike microfilaments during animal cell movement. In “Cell Motility” (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). Vol. 3; 217–246.

    Google Scholar 

  • Hitchcock, S. E. 1977. Regulation of motility in nonmuscle cells. J. Cell Biol. 74; 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann-Berling, H. 1954. Adenosintriphosphataes Betriebsstoft von Zellbewegungen. Biochim. Biophys. Acta. 14; 182–196.

    Article  PubMed  CAS  Google Scholar 

  • Hoebeke, J., G. van Nijen, and M. DeBrabander. 1976. Interaction of nocadazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem. Biophys. Res. Comm. 69; 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H. E. 1973. Muscular contraction and cell motility. Nature 243; 445–449.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S. and H. Sato. 1967. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. In “Contractile Processes in Nonmuscle Systems.” pp. 259-292.

    Google Scholar 

  • Inoue, S. and H. Ritter Jr. 1975. Dynamics of mitotic spindle organization and function. In “molecules and Cell Movement” (S. Inoue and R. E. Stephens, eds.). Raven Press, New York. pp. 3–30.

    Google Scholar 

  • Isenberg, G., P. Rathke, N. Hulsmann, W. W. Franke and K. E. Wolfarth-Bottermann. 1976. Cytoplasmic actomyosin fibrils in tissue culture cells. Cell Tissue Res. 166; 427–445.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., L. I. Binder, and J. L. Rosenbaum. 1979. The periodic association of MAP2 with brain microtubules in vitro. J. Cell Biol. 80; 266–276.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner, Marc W. 1978. Microtubule assembly and nucleation. International Rev. of Cytol. 54; 1–71.

    Article  CAS  Google Scholar 

  • Korn, E. D. 1978. Biochemistry of actomyosin-dependent cell motility. Proc. Nat. Acad. Sci. U.S. 75; 588–599.

    Article  CAS  Google Scholar 

  • Lehman, W. and A. G. Szent-Gyorgyi. 1975. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J. General Physiol. 66; 1–30.

    Article  CAS  Google Scholar 

  • Maruta, H. and E. D. Korn. 1977. Acanthamoeba confactor protein is a heavy chain kinase required for actin activation of the Mg++ ATPase activity of Acanthamoeba myosin I. J. Biol. Chem. 252; 8329–8332.

    PubMed  CAS  Google Scholar 

  • McDonald, K., J. D. Pickett-Heaps, J. R. Mclntosh, and D. H. Tippit. 1977. On the mechanism of anaphase spindle elongation in Diatoma vulgare. J. Cell Biol. 74; 377–388.

    Article  PubMed  CAS  Google Scholar 

  • Mclntosh, J. R. 1973. The axostyle of Saccinobaculus. II. Motion of the microtubule bundle and a structural comparison of straight and bent axostyles. J. Cell Biol. 56; 324–339.

    Article  Google Scholar 

  • Mclntosh, J. R., P. K. Hepler and D. G. Van Wie. 1969. Model for mitosis. Nature 224; 659–663.

    Article  Google Scholar 

  • Mclntosh, J. R. and K. R. Porter. 1967. Microtubules in the spermatids of the domestic fowl. J. Cell Biol. 35; 153–173.

    Article  Google Scholar 

  • Mooseker, M. S., and L. G. Tilney. 1973. Isolation and reactivation of the axostyle. J. Cell Biol. 56; 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Olmstead, J. B. and G. G. Borisy. 1973. Microtubules. Ann. Rev. Biochem. 42; 507–540.

    Article  Google Scholar 

  • Piatigorsky, J., D. C. Beebe, P. Zelenka, L. M. Milstone, and T. Shinohara. 1976. Inserm. 60; 85–112.

    CAS  Google Scholar 

  • Pollard, T. D. and R. R. Weihing. 1974. Actin and myosin and cell movement. CRC Crit. Rev. Biochem. 2; 1–65.

    Article  PubMed  CAS  Google Scholar 

  • Porter, K. R. 1966. Cytoplasmic microtubules and their functions. Ciba Foundation Symp. on Principles of Biomolecular Organization. (G. E. Wolstenholme, and M. O’Connor). Boston, Little Brown, pp. 308–345.

    Google Scholar 

  • Puck, T. T. 1977. Cyclic AMP, microtubule-microfilament system, and cancer. Proc. Nat’l Acad. Sci. U.S. 74; 4491–4495.

    Article  CAS  Google Scholar 

  • Rebhun, L. I., J. Nath, and S. P. Remillard. 1976. Sulfhydryls and regulation of cell division. In “Cell Motility” (R. Goldman, T. D. Pollard and J. L. Rosenbaum, eds.). Cold Spring Harbor, New York. pp. 1329–1342.

    Google Scholar 

  • Satir, P. 1974. The present status of the sliding microtubule model of ciliary motion. In “Cilia and flagella” (M. A. Seligh, ed.). Academic Press, New York. pp. 131–146.

    Google Scholar 

  • Seravin, L. N. 1967. In “Locomotor Systems of Protozoa.” Nauka, Leningrad, p. 330.

    Google Scholar 

  • Snyder, J. A. and J. R. Mclntosh. 1975. Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J. Cell Biol. 67; 744–760.

    Article  PubMed  CAS  Google Scholar 

  • Soifer, D. ed. 1975. “The Biology of Cytoplasmic Microtubules.” Ann. N.Y. Acad. Sci. 253; 848 pp.

    Google Scholar 

  • Stephens, R. E. and K. T. Edds. 1976. Microtubules: Structure, chemistry and function. Physiol. Rev. 56; 709–777.

    PubMed  CAS  Google Scholar 

  • Summers, K. E. and I. R. Gibbons. 1971. Adenosine triphosphate-induced sliding of tubules in trypsintreated flagella of sea urchin sperm. Proc. Nat’l. Acad. Sci. U.S. 68; 3092–3096.

    Article  CAS  Google Scholar 

  • Tanenbaum, S. W. 1978. “Cytochalasins, Biochemical and Cell Biological Aspects.” Elsevier, North Holland, Amsterdam. 495 pp.

    Google Scholar 

  • Taylor, D. L. and J. S. Condeelis. 1979. Cytoplasmic structure and contractility in amoeboid cells. Int. Rev. Cytol. 56; 57–144.

    Article  PubMed  CAS  Google Scholar 

  • Tilney, L. G. 1971. Origin and continuity of microtubules. In “Origin and Continutity of Cell Organelles” (J. Reinert and H. Ursprung, eds.). Springer-Verlag, New York. pp. 221–260.

    Google Scholar 

  • Walls, G. L. 1942. “The Vertebrate Eye.” Hafner Pub. Co., New York. 785 pp.

    Google Scholar 

  • Warren, R. H. 1974. Microtubular organization in elongating myogenic cells. J. Cell Biol. 63; 550–566.

    Article  PubMed  CAS  Google Scholar 

  • Warren, R. H. and B. Burnside. 1978. Microtubules in cone myoid elongation in the teleost retina. J. Cell Biol. 78; 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Weber, A. M. and J. M. Murray. 1973. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53; 612–671.

    PubMed  CAS  Google Scholar 

  • Weber, K., P. C. Rathke, M. Osborn, and W. W. Franke. 1976. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin. Exp. Cell Res. 102; 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg, R. C, W. J. Deery and P. Dickinson. 1976. Nucleotide interactions during polymerization and depolymerization of tubulin. In “Cell Motility” (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). pp. 1123-1132.

    Google Scholar 

  • Wilson, L. 1975. Microtubules as drug receptors: pharmacological properties of microtubule protein. Ann. N.Y. Acad. Sci. 253; 213–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Burnside, B. (1981). Mechanism of Cell Shape Determination in Teleost Retinal Cones. In: Hilfer, S.R., Sheffield, J.B. (eds) Ocular Size and Shape Regulation During Development. Ocular Size and Shape. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5964-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5964-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5966-4

  • Online ISBN: 978-1-4612-5964-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics