Skip to main content

Morphology and Phyletic Relationships of the Silicified Algae and the Archetypal Diatom — Monophyly or Polyphyly

  • Chapter
Silicon and Siliceous Structures in Biological Systems

Abstract

Considering the abundance of silicon in nature it is surprising how few groups of organisms have utilized this element. Its use is most likely to be in the formation of resistant wall material, since carbon has achieved an overwhelming role in metabolic pathways. We should not, however, neglect to speculate on and investigate the possibility of the participation of silicon in other metabolic processes. The reason so few groups utilize silicon may be that they already produce basic organic compounds via their photosynthetic pathway and these can be used for wall/skeletal formation. However, to incorporate silicon rather than to convert a polysaccharide produced by photosynthesis might be much more economical of energy—possibly by a factor of 5–10 (Werner, 1977). Of the 14 divisions of the algae, only three, plus one small family make any notable use of silicon in construction and one question we should perhaps pose is, “How is it that most plants avoid depositing silica?” A few algae, e.g., Pediastrum, Tetraedron and Hydrodictyon, are reported to incorporate silica into organic walls, but no algae use it simply as an additional strengthening element as do some macrophytic plants such as Equisetum, many Gramineae and Cyperaceae, or in the hairs as do Commelinaceae, Ulnus, Canabis, and the Zingiberaceae (Chaps. 14, 15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous. 1975. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwigia, Beih., 53:323–354.

    Google Scholar 

  • Belcher, J. H. 1969. Some remarks upon Mallomonas papillosa Harris and Bradley and M. calceolus Bradley. Nova Hedwigia, 18:257–270.

    Google Scholar 

  • Bold, H. C., and M. J. Wynne, 1978. Introduction to the Algae. Structure and Reproduction. Prentice Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Boney, A. S. 1976. Observation of the silicoflagellate Dictyocha speculum Ehrenb.: double skeletons and mirror-images. J. Mar. Biol. Assoc. U.K., 56:263–266.

    Article  Google Scholar 

  • Bourelly, P. 1968. Les Algues d’Eau Douce, Algues Jaunes et Brunes. Boubee, Paris.

    Google Scholar 

  • Casper, S. J. 1974. Grundzuge eines naturlichen Systems der Mikroorganismen. VEB Gustav Fischer, Jena.

    Google Scholar 

  • Christensen, T. 1962. Systematisk Botanik Alger. In: T. W. Böcher, M. Lang and T. Sorensen (eds), Botanik. Munksgaard, Kobenhaven.

    Google Scholar 

  • Christensen, T. 1971. The gross classification of algae. In: J. R. Rosowski and B. C. Parker (eds), Dept. Botany, Univ. Nebraska, Lincoln, Nebraska.

    Google Scholar 

  • Crawford, R. M. 1974. The auxospore wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. and related species. Br. Phycol. J., 9:9–20.

    Article  Google Scholar 

  • Drebes, G. 1972. The life history of the centric diatom Bacteriastrum hyalinum Lauder. Nova Hedwigia, Beih., 39:95–110.

    Google Scholar 

  • Ettl, H. 1978. Xanthophyceae. I. Teil. Susswasserflora von Mitteleuropa. Vol. 3. Gustav Fischer Verlag, Stuttgart and New York.

    Google Scholar 

  • Fott, B. 1974. The phylogeny of eucaryotic algae. Taxon, 23:446–461.

    Article  Google Scholar 

  • Fryxell, G. A. 1977. Chain-forming diatoms: three species of Chaetoceraceae. J. Phycol., 14:62–71.

    Article  Google Scholar 

  • Gawlik, S. R., and W. F. Millington, 1969.Pattern formation and the fine structure of the developing cell wall in colonies of Pediastrum boryanum. Am. J. Bot., 56:1084–1093.

    Article  PubMed  CAS  Google Scholar 

  • Geitler, L. 1962. Die Entwicklungsgeschichte von Coleochaete niteilarum und das Rechts-Links-Problem. Öst. Bot. Z., 109:529–539.

    Article  Google Scholar 

  • Geitler, L. 1979. Some peculiarities in the life history of pennate diatoms hitherto overlooked. Am. J. Bot., 66:91–97.

    Article  Google Scholar 

  • Gran, H. H. 1915. The plankton production in the north European waters in the spring of 1912. Bull. Plankt. l’Année 1912, Copenhagen, pp. 1–146.

    Google Scholar 

  • Greenwood, A. D. 1967. Scale production in Synura. Proc. R. Microbiol. Soc, 2:380–381.

    Google Scholar 

  • Hargreaves, P. E. 1976. Studies on marine plankton diatoms. II. Resting spore morphology. J. Phycol., 12:118–128.

    Google Scholar 

  • Heath, I. B., and W. M. Darley. 1972. Observations on the ultrastructure of the male gametes of Biddulphia Jevis. J. Phycol., 8:51–59.

    Google Scholar 

  • Hedley, R. H. and C. G. Ogden. 1973. Biology and fine structure of Euglypha rotunda (Testacea: Protozoa). Bull. Br. Mus. Nat. Hist. (Zool.), 25:119–127.

    Google Scholar 

  • Hedley, R. H. and C. G. Ogden. 1974. Adhesion plaques associated with the production of a daughter cell in Euglypha (Testacea, Protozoa). Cell Tiss. Res., 153:261–268.

    Article  CAS  Google Scholar 

  • Hennig, W. 1966. Phylogenetic Systematics. Univ. Illinois Press, Urbana.

    Google Scholar 

  • Hibberd, D. J. 1973. Observations on the ultrastructure of flagella scales in the genus Synura (Chrysophyceae). Arch. Mikrobiol., 89:291–324.

    Article  PubMed  CAS  Google Scholar 

  • Hibberd, D. J. 1976. The ultrastructre and taxonomy of the Chrysophyceae and Prymnesophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. Bot. J. Limnol. Soc, 72:55–80.

    Article  Google Scholar 

  • Hibberd, D. J. 1977. Ultrastructure of cyst formation in Ochromonas tubercu-lata (Chrysophyceae). J. Phycol., 13:309–320.

    Google Scholar 

  • Hibberd, D. J. 1978. Possible phylogenetic value of the transitional helix in some chromophyte algal classes and some colourless protists. Biosystems, 10:115–116.

    Article  Google Scholar 

  • Hibberd, D. J. 1979. Notes on the ultrastructure of the genus Paraphysomonas (Chrysophyceae) with special reference to P. bandaiensis Takahashi. Arch. Protistenk., 121:146–154.

    Google Scholar 

  • Hibberd, D. J., and G. F. Leedale. 1971. A new algal class—the Eustigma-tophyceae. Taxon, 20(4):523–525.

    Article  Google Scholar 

  • Hofler, K. 1943. Öber Fettspeicherung und Zuckerpermeabilität einiger Diatomeen und über Diagonalsymmetrie im Diatomeenprotoplasten. Protoplasma, 38:71–104.

    Article  Google Scholar 

  • Jeffrey, S. 1976. The occurrence of chorophyll C1 and C2 in algae. J. Phycol., 12:349–354.

    CAS  Google Scholar 

  • Leadbeater, B. 1972. Fine structural observations on some marine choanoflagel-lates. J. Mar. Biol. Assoc. (U.K.), 52:67–79.

    Article  Google Scholar 

  • Leedale, G. F. 1974. How many are the kingdoms of organisms. Taxon, 23:261–276.

    Article  Google Scholar 

  • Locker, S. 1974. Revision der Silicoflagellaten sus der Mikrogeologischen Sammlung von C. G. Ehrenberg. Ecologae Geol. Helv., 67:631–646.

    Google Scholar 

  • Loeblich, A. R., Jr. 1974. Protistan phylogeny as indicated by the fossil record. Taxon, 23:277–290.

    Article  Google Scholar 

  • Lund, J. W. G. 1960. New or rare British Chrysophyceae 3. New records and observations on sexuality and classification. New Phyt, 59:349–360.

    Article  Google Scholar 

  • Manton, R., and G. F. Leedale. 1961. Observation on the fine structure of Paraphysomonas vestita with special reference to the Golgi apparatus and the origin of scales. Phycologia, 1:37–57.

    Article  Google Scholar 

  • Mann, D. G. 1978. Studies in the Family Nitzschiaceae. Ph.D. Thesis. Bristol University.

    Google Scholar 

  • Margulis, L. 1970. Origin of Eukaryotic Cells. Yale Univ. Press., New Haven.

    Google Scholar 

  • Margulis, L. 1974. The five kingdom classification and the origin and evolution of cells. Evol. Biol., 7:45–78.

    Google Scholar 

  • Melkonian, M. 1978. Structure and significance of cruciate flagellar root systems in green algae. Comparative investigations in species of ChJorosar-cinopsis (Chlorosarcinales) Pe. Syst. Evol., 130:265–297.

    Article  Google Scholar 

  • Millington, W. F., and S. R. Gawlik. 1967. Silica in the wall of Pediastrum. Nature, 216:68.

    Article  PubMed  CAS  Google Scholar 

  • Parker, B. C. 1969. Occurrence of silica in brown and green algae. Can. J. Bot., 47:537–540.

    Article  CAS  Google Scholar 

  • Pascher, A. 1914. Öber Flagellaten und Algen. Ber. Dtsch. Bot. Ges., 32:136–160.

    Google Scholar 

  • Pascher, A. 1921. Öber die Öbereinstimmungen zwischen den Diatomeen, He-terokonten und Chrysomonaden. Ber. Dtsch. Bot. Ges., 39:236–240.

    Google Scholar 

  • Pascher, A. 1939. Heterokonten. In: Rabenhorst’s Kryptogamen Flora von Deutschland. Österreich und der Schweiz. Bd., 11:1092 pp.

    Google Scholar 

  • Pickett-Heaps, J.D., and D. H. Tippit. 1978. The diatom spindle in perspective. Cell, 14(3):455–468.

    Article  PubMed  CAS  Google Scholar 

  • Round, F. E. 1963. The taxonomy of the Chlorophyta. Br. Phyc. Bull., 2:224–235.

    Article  Google Scholar 

  • Round, F. E. 1971. The taxonomy of the Chlorophyta II. Br. Phycol. J., 6:235–264.

    Article  Google Scholar 

  • Rudzki, B. 1964. Rechts-Links-Differenzierung bei Diatomeen. Ost. bot. Z., 111:527–529.

    Article  Google Scholar 

  • Schnepf, E., and G. Deichgraber. 1969. Öber die Feinstruktur von Synura peter-senii unter besonderen Berüchsichtigung der Morphogenese ihrer Kieselschuppen. Protoplasma, 68:85–106.

    Article  Google Scholar 

  • Schwartz, R. M., and M. O. Dayhoff. 1978. Origins of prokaryotes, eukaryotes, mitochondria and chloroplasts. Science, 199:395–403.

    Article  PubMed  CAS  Google Scholar 

  • Small, J. 1945. Quantitative evolution VIL The diatoms. Proc. R. Soc. Edin. Sect. B., LXl 1:128–131.

    Google Scholar 

  • Sneath, P. H. A., and R. R. Sokal. 1973. Numerical Taxonomy. The Principles and Practice of Numerical Classification. W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • Strasburger, E. 1976. Strasburgers Textbook of Botany. Translated by D. E. Coombe and P. R. Bell. Longman, London.

    Google Scholar 

  • Takahashi, E. 1978. Electron Microscopical Studies of the Synuraceae (Chryso-phyceae) in Japan. Tokai Univ. Press.

    Google Scholar 

  • Taylor, F. J. R. 1976. Flagellate phylogeny: a study in conflicts. J. Protozool. 23:2840.

    Google Scholar 

  • Tsumura, K. 1963. A systematic study of Silicoflagellatae. J. Yokohama Municipal University. Ser. C-45., no. 146.

    Google Scholar 

  • Van den Hoek, C. 1978. Algen. Einführung in die Phykologie. Georg Thieme, Stuttgart.

    Google Scholar 

  • Van Valkenberg, S. D. 1971. Observations on the fine structure of Dictyocha fibula Ehrenberg I. The Skeleton. J. Phycol., 7:113–118.

    Google Scholar 

  • Van Valkenburg, S. D., E. P. Karlander, G. W. Patterson and R. R. Colwell. 1977. Features for classifying photosynthetic aerobic nannoplankton by numerical taxonomy. Taxon, 26:497–505.

    Article  Google Scholar 

  • Van Valkenburg, S. D., and R. E. Norris. 1970. The growth and morphology of the silicoflagellate Dictyocha fibula Ehrenberg in culture. J. Phycol., 6:48–54.

    Google Scholar 

  • Weiss, A., and D. Herzog, 1977. Isolation and characterisation of a silicon-organic complex from plants. In: G. Bendz and I. Lindqvist, (eds.). Biochemistry of Silica and Related Problems. Plenum Press, New York, pp. 109–127.

    Google Scholar 

  • Werner, D. 1977. Silicate metabolism. In: D. Werner (ed.) The Biology of diatoms. Blackwell, Oxford. pp. 110–149.

    Google Scholar 

  • Whittaker, R. H., and L. Margulis, 1978. Protist classification and the kingdoms of organisms. Biosystems, 10:3–18.

    Article  PubMed  CAS  Google Scholar 

  • Whittle, S. J., and P. J. Casselton. 1975a. The Chloroplast pigments of the algal classes Eustigmatophyceae and Xanthophyceae. I. Eustigmatophyceae. Br. Phycol. J., 10:179–191.

    Article  Google Scholar 

  • Whittle, S. J., and P. J. Casselton. 1975b. The Chloroplast pigments of the algal classes Eustigmatophyceae and Xanthophyceae. II. Xanthophyceae. Br. Phycol. J., 10:192–204.

    Article  Google Scholar 

  • Wujek, D. E., and J. Kristiansen, 1978. Observations on bristle and scale production in Mallomonas caudata (Chrysophyceae). Arch. Protistenk., 120:213–221.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Round, F.E. (1981). Morphology and Phyletic Relationships of the Silicified Algae and the Archetypal Diatom — Monophyly or Polyphyly. In: Simpson, T.L., Volcani, B.E. (eds) Silicon and Siliceous Structures in Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5944-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5944-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5946-6

  • Online ISBN: 978-1-4612-5944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics