Skip to main content

Abstract

Silicon is one of the so-called “newer trace elements.” Although interest in the silicon content of animal tissues and the effects of siliceous substances upon animals was evident over half a century ago, emphasis has been placed until recently on the toxicity of silicon, mainly its involvement in silicosis (King and Belt, 1938). It is only within the last decade that silicon has been recognized as participating in the normal metabolism of higher animals and as an essential trace element. It has been shown that silicon is required for growth and skeletal development in the chick (Carlisle, 1972) and the rat (Schwarz and Milne, 1972), and for bone, cartilage, and connective tissue formation (Carlisle, 1976a, 1980a,b 1981), as will be discussed more fully below. A relationship between silicon and aging in certain tissues has also been reported, the silicon content of aorta and skin decreasing significantly with age; this occurs in several animal species (Carlisle, 1974) and also in humans (Loeper et al., 1978), where the decrease in the aorta has been associated with the development of atherosclerosis. The possible involvement of silicon in atherosclerosis has also been suggested by others (Schwarz, 1978). Moreover, a relationship between silicon, age, and endocrine balance has been reported, with the suggestion that the decline in hormonal activity may be responsible for the changes in silicon levels in senescence (Charnot and Pérés, 1971, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carlisle, E. M. 1969. Silicon localization and calcification in developing bone, Fed. Proc, 28:374.

    Google Scholar 

  • Carlisle, E. M. 1970a. Silicon: a possible factor in bone calcification, Science, 167:179–280.

    Article  Google Scholar 

  • Carlisle, E. M. 1970b. A relationship between silicon and calcium in bone formation, Fed. Proc, 29:565.

    Google Scholar 

  • Carlisle, E. M. 1971. A relationship between silicon, magnesium and fluorine in bone formation in the chick, Fed. Proc, 30:462.

    Google Scholar 

  • Carlisle, E. M 1972. Silicon, an essential element for the chick, Science, 178:619–621.

    Article  PubMed  CAS  Google Scholar 

  • Carlisle, E. M. 1974. Silicon as an essential element, Fed. Proc, 33:1758–1766.

    PubMed  CAS  Google Scholar 

  • Carlisle, E. M. 1975. Silicon in the osteoblast, Fed. Proc, 34:927.

    Google Scholar 

  • Carlisle, E. M. 1976a. In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick, J. Nutr., 106:478–484.

    PubMed  CAS  Google Scholar 

  • Carlisle, E. M. 1976b. Bone cell silicon stores and interrelationships established with other elements, Fed. Proc, 35:256.

    Google Scholar 

  • Carlisle, E. M. 1978. Essentiality and function of silicon. In: G. Bendz and I. Lindquist (eds.). Biochemistry of Silicon and Related Problems. Plenum Press, New York, pp. 231–253.

    Google Scholar 

  • Carlisle, E. M. 1980a. A silicon requirement for normal skull formation, J. Nutr., 10:352–359.

    Google Scholar 

  • Carlisle, E. M. 1980b. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J. Nutr., 10:1046–1056.

    Google Scholar 

  • Carlisle, E. M 1981. Silicon: a requirement in bone formation independent of vitamin D. Calc Tiss. Int., 33:27–34.

    Article  CAS  Google Scholar 

  • Carlisle, E. M., and W. Alpenfels. 1978. A requirement for silicon for bone growth in culture. Fed. Proc, 37:1123.

    Google Scholar 

  • Charnot, Y., and G. Pérés. 1971. Contribution a l’etude de la regulation endocrinienne du métabolisme silicique. Anal. Endocr., 32:397–402.

    CAS  Google Scholar 

  • Charnot, Y., and G. Pérés. 1978. Silicon, endocrine balance and mineral metab-olism. In: G. Bendz and I. Lindquist (eds.). Biochemistry of Silicon and Related Problems. Plenum Press, New York, pp. 269–280.

    Google Scholar 

  • Cruft, E. R., C. O. Ingamells, and J. Muysson. 1964. Chemical analysis and the stoichiometry of apatite, Geochim. Cosmochim. Acta, 29:581–597.

    Article  Google Scholar 

  • Jeanloz, R. W. 1970. Mucopolysaccharides of higher animals. In: W. Pigman and D. Horton (eds.). The Carbohydrates, Academic Press, New York, vol. IIB, pp. 589–625.

    Google Scholar 

  • Kashiwa, H. K. 1966. Calcium in cells of fresh bone stained with glyoxal bis (2-hydroxy-y-nil). Stain Technol, 41:49–55.

    PubMed  CAS  Google Scholar 

  • King, E. J., and T. H. Belt. 1938. The physiological and pathological aspects of silica. Physiol. Rev., 18:329–365.

    CAS  Google Scholar 

  • Loeper, J., J. Loeper and M. Fragny. 1978. The physiological role of the silicon and its antiatheromatous action. In: G. Bendz and I. Lindquist (eds.). Biochemistry of Silicon and Related Problems. Plenum Press, New York, pp. 281–296.

    Google Scholar 

  • Mathews, J. L., J. H. Martin and E. J. Collins. 1968. Metabolism of radioactive calcium by cartilage. Clin. Orthop., 58:213–223.

    Google Scholar 

  • McConnell, D. 1937. A structural investigation of the isomorphism of the apatite group, Am. Mineral., 22:977–985.

    CAS  Google Scholar 

  • McConnell, D. 1938. The substitution of SiO4 and SO4-groups for PO4-groups in the apatite structure; ellestadite, the end-member, Am. Mineral, 23:1–19.

    CAS  Google Scholar 

  • Muller, S. A., A. S. Posner, and H. E. Firschein. 1966. Effect of vitamin D-deficiency on the crystal chemistry of bone mineral, Proc. Soc. Exp. Biol. Med., 121:844–46.

    PubMed  CAS  Google Scholar 

  • Pautard, F. G. E. 1966. A biomolecular survey of calcification, In: H. Fleisch, et al. (eds.). Calcified Tissues, Springer-Verlag, New York.

    Google Scholar 

  • Schwarz, K., and D. B. Milne. 1972. Growth-promoting effects of silicon in rats, Nature, 239:333–334.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, K. 1973. A bound form of silicon in glycosaminoglycans and polyuronides. Proc. Natl. Acad. Sci. USA, 70:1608–1612.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, K. 1978. Significance and functions of silicon in warm-blooded animals. In: G. Bendz and I. Lindquist (eds.). Biochemistry of Silicon and Related Problems. Plenum Press, New York, pp. 207–230.

    Google Scholar 

  • Sledge, G. D. 1966. Some morphologic and experimental aspects of limb development. Clin. Orthop., 44:241–265.

    PubMed  CAS  Google Scholar 

  • Sobel, A. E., P. A. Lawrence, and M. Burger. 1960. Nuclei formation and crystal growth in mineralizing tissues. Trans. N. Y. Acad. Sci., 22:233.

    CAS  Google Scholar 

  • Tanaka, Y., H. Frank, and H. F. De Luca. 1973. Role of 1,25-Dihydroxy-Cholecalciferal in calcification of bone and maintenance of serum calcium concentration in the rat, J. Nutr., 102:1569–1578.

    Google Scholar 

  • Underwood, E. J. 1971. Trace Elements in Human and Animal Nutrition. Academic Press, New York.

    Google Scholar 

  • Urist, M. R. 1966. Origins of current ideas about calcification. Clin. Orthop., 44:13–39.

    PubMed  CAS  Google Scholar 

  • Wolbach, S. B., and D. M. Hegsted. 1952. Endochondral bone growth in the chick, Arch. Pathol, 54:1–12.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Carlisle, E.M. (1981). Silicon in Bone Formation. In: Simpson, T.L., Volcani, B.E. (eds) Silicon and Siliceous Structures in Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5944-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5944-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5946-6

  • Online ISBN: 978-1-4612-5944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics