Skip to main content

Abstract

Germanium and silicon* co-occur in group IV-A of the Periodic Table. The two elements have similar outer shells and their ionic radii are also very similar (Ge = 0.47 Å; Si = 0.42 õ). Ge therefore resembles Si in its chemical properties (Jolly, 1966), and is known to substitute for Si in a number of silicate minerals (Goldschmidt, 1958). Both Si and Ge have been reported in all plants and animals examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, F. 1974. Silicic acid uptake in diatoms studied with [68Ge] germanic acid as tracer. Planta (Berlin), 125:205–212.

    Article  Google Scholar 

  • Azam, F., and S. W. Chisholm. 1976. Silicic acid uptake and incorporation by natural marine phytoplankton populations. Limnol. Oceanogr., 21:427–435.

    Article  CAS  Google Scholar 

  • Azam, F., and S. W. Chisholm. 1978. Uptake of silicic acid. In: J. A. Hellebust and J. S. Craigie (eds.). Handbook of Phycological Methods: Physiological and Biochemical Methods. Cambridge Univ. Press, Cambridge, England, pp. 427–434.

    Google Scholar 

  • Azam, F., B. B. Hemmingsen and B. E. Volcani. 1973. Germanium incorporation into the silica of diatom cell walls. Arch. Mikrobiol., 92:11–20.

    Article  CAS  Google Scholar 

  • Azam, F., B. B. Hemmingsen and B. E. Volcani. 1974. Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom Nitzschia alba. Arch. Microbiol., 97:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Azam, F., and B. E. Volcani. 1974. Role of silicon in diatom metabolism. VI. Active transport of germanic acid in the heterotrophic diatom Nitzschia alba. Arch. Microbiol., 101:1–8.

    Article  CAS  Google Scholar 

  • Bendz, G., and I. Lindqvist (eds.). 1978. Biochemistry of silicon and related problems. Plenum Press, New York.

    Google Scholar 

  • Carlisle, E. M. 1978. Essentiality and function of silicon. In: Bendz, G. and I. Lindqvist (eds.). Biochemistry of silicon and related problems. Plenum Press, New York, pp. 231-253.

    Google Scholar 

  • Chen, C. H., and J. C. Lewin. 1969. Silicon as a nutrient element for Equisetum arvense. Can. J. Bot., 47:125–131.

    Article  CAS  Google Scholar 

  • Chiappino, M. L., F. Azam and B. E. Volcani. 1977. Effect of germanic acid on developing cell walls of diatoms. Protoplasma, 93:191–204.

    Article  CAS  Google Scholar 

  • Chisholm, S. W., F. Azam and R. W. Eppley. 1978. Silicic acid incorporation in marine diatoms on light:dark cycles: Use as an assay for phased cell division. Limnol. Oceanogr., 23:518–529.

    Article  CAS  Google Scholar 

  • Coombs, J., P. J. Halicki, O. Holm-Hansen and B. E. Volcani. 1967. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Changes in concentration of nucleoside triphosphates during synchronized division of Cylindrotheca fusiformis Reimann and Lewin. Exp. Cell Res., 47:302–314.

    Article  PubMed  CAS  Google Scholar 

  • Cornec, E. 1919. Etude spectrographique des cendres de plantes marines. Comptes rendus hebdomadaires des seances de l’academie des sciences, 168:513–514.

    CAS  Google Scholar 

  • Darley, W. M., and B. E. Volcani. 1969. Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp. Cell Res., 58:334–343.

    Article  PubMed  CAS  Google Scholar 

  • Elvin, D. W. 1972. Effect of germanium upon development of siliceous spicules of some fresh-water sponges. Exp. Cell Res., 72:551–553.

    Article  PubMed  CAS  Google Scholar 

  • Ferm, V. H., and S. J. Carpenter. 1970. Teratogenic and embryopathic effects of indium, gallium and germanium. Toxicol. Appl. Pharmacol., 16:166–170.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt, V. M. 1958. Geochemistry. Oxford Univ. Press, London.

    Google Scholar 

  • Hamilton, E. I., and M. J. Minski. 1972. Comments upon the inorganic constituents present in DNA and RNA. Sci. Total Environ., 1:104–107.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, E. I., M. J. Minski and J.J. Cleary. 1972. The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom. Sci. Total Environ., 1:341–374.

    Google Scholar 

  • Hecky, R. E., K. Mopper, P. Kilham and E. T. Degens. 1973. The amino acids and sugar composition of diatom cell-walls. Mar. Biol., 19:323–331.

    Article  CAS  Google Scholar 

  • Hueper, W. C. 1931. Effects of overdoses of germanium oxide upon the blood and tissues of rabbit. Am. J. Med. Sci., 181:820–830.

    Article  CAS  Google Scholar 

  • Iler, R. K. 1955. The colloid chemistry of silica and silicates. Cornell Univ. Press, New York.

    Google Scholar 

  • Johnson, D. L., and R. S. Braman. 1975. The speciation of arsenic and the content of germanium and mercury in members of the pelagic Sargassum community. Deep Sea Res., 22:503–507.

    CAS  Google Scholar 

  • Johnson, R. N., and B. E. Volcani. 1978. The uptake of silicic acid by rat liver mitochondria. Biochem. J., 172:557–568.

    PubMed  CAS  Google Scholar 

  • Jolly, W. L. 1966. The chemistry of non-metals. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kanisawa, M., and H. A. Schroeder. 1967. Life-term studies on the effects of arsenic, germanium, tin and vanadium on spontaneous tumors in mice. Cancer Res., 27:1192–1195.

    PubMed  CAS  Google Scholar 

  • Klaveness, D., and R. R. L. Guillard. 1975. The requirement for silicon in Synura petersenii (Chrysophyceae). J. Phycol., 11:349–355.

    CAS  Google Scholar 

  • Lauritis, J. A., J. Coombs and B. E. Volcani. 1968. Studies on the biochemistry and fine structure of silica shell formation in diatoms. IV. Fine structure of the apochlorotic diatom Nitzschia alba Lewin and Lewin. Arch. Mikrobiol., 62:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. E. 1978. Formation of scales in Pamphysomonas vestita and the inhibition of growth by germanium dioxide. J. Protozool., 25:163–166.

    CAS  Google Scholar 

  • Lewin, J. C. 1966. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia, 6:1–12.

    Article  CAS  Google Scholar 

  • Matsumoto, H., S. Syo and E. Takahashi. 1975. Translocation and some forms of germanium in rice plants. Soil Sci. Plant Nutr. (Tokyo), 21:273–279.

    CAS  Google Scholar 

  • Matsumoto, H., and E. Takahashi. 1976. In vitro binding of germanium to proteins of rice shoots. Soil Sci. Plant Nutr. (Tokyo), 22:191–197.

    CAS  Google Scholar 

  • Mehard, C. W., C. W. Sullivan, F. Azam and B. E. Volcani. 1974. Role of silicon in diatom metabolism. IV. Subcellular localization of silicon and germanium in Nitzschia alba and Cylindrotheca fusiformis. Physiol. Plant., 30:265–272.

    Article  CAS  Google Scholar 

  • Mehard, C. W., and B. E. Volcani. 1975. Similarity in uptake and retention of trace amounts of 31Silicon and 68Germanium in rat tissues and cell organelles. Bioinorg. Chem., 5:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, G. 1954. Studies of the metabolism of germanium. Arch. Biochem. Biophys., 48:84–94.

    Article  PubMed  CAS  Google Scholar 

  • Sangster, A. G., and D. W. Parry. 1971. Silica deposition in grass leaf in relation to transpiration and the effect of dinitrophenol. Ann. Bot., 35:667–677.

    CAS  Google Scholar 

  • Sankhla, N., and D. Sankhla. 1967. Effect of germanium on growth of higher plants. Naturwissen., 54:621.

    Article  CAS  Google Scholar 

  • Schroeder, H. A., and J. J. Balassa. 1967. Arsenic, germanium, tin and vanadium in mice. Effects on growth, survival and tissue levels. J. Nutrition, 92:245–252.

    CAS  Google Scholar 

  • Schroeder, H. A., M. Kanisawa, D. V. Frost and M. Mitchner. 1968. Germanium, tin and arsenic in rats: effects on growth, survival, pathological lesions and life span. J. Nutrition, 96:37–45.

    CAS  Google Scholar 

  • Schwarz, K. 1978. Significance and functions of silicon in warm-blooded animals. Review and outlook. In: G. Bendz and I. Lindqvist (eds.). Biochemistry of Silicon and Related Problems. Plenum Press. New York, pp. 207–230.

    Google Scholar 

  • Subba Rao, D. V. 1980. Measurement of primary production in phytoplankton groups. Oceanologica Acta, 3:31–42.

    Google Scholar 

  • Sullivan, C. W. 1971. A silicic acid requirement for DNA polymerase, thymidylate kinase and DNA synthesis in the marine diatom Cylindrotheca fusiformis. Ph.D. dissertation, University of California, San Diego.

    Google Scholar 

  • Sullivan, C. W. 1976. Diatom mineralization of silicic acid. I. Si(OH)4 transport characteristics in Navicula pelliculosa. J. Phycol., 12:390–396.

    CAS  Google Scholar 

  • Sullivan, C. W. 1977. Diatom mineralization of silicic acid. II. Regulation of Si(OH)4 transport rates during the cell cycle of Navicula pelliculosa. J. Phycol. 13:86–91.

    CAS  Google Scholar 

  • Tensho, K., and K.-L. Yeh. 1972. Tracer study on preferential uptake of germanium by rice plants. Soil Sci. Plant Nutr., 18:173–178.

    CAS  Google Scholar 

  • Thomas, W. H., and A. N. Dodson. 1974. Inhibition of diatom photosynthesis by germanic acid: separation of diatom productivity from total marine primary productivity. Mar. Biol., 27:11–19.

    Article  CAS  Google Scholar 

  • Thomas, W. H., A. N. Dodson and F. M. H. Reid. 1978. Diatom productivity compared to other algae in natural marine phytoplankton assemblages. J. Phycol., 14:250–253.

    Article  Google Scholar 

  • Underwood, E. J. 1971. Trace elements in human and animal nutrition. Academic Press, New York, p. 407.

    Google Scholar 

  • Volcani, B. E., 1978. Role of silicon in diatom metabolism and silicification. In: G. Bendz and I. Lindqvist (eds.), Biochemistry of silicon and related problems. Plenum Press, New York, pp. 177–204.

    Google Scholar 

  • Werner, D. 1966. Die Kieselsäure im steffwechsel von Cyclotella cryptica, Reimann, Lewin and Guillard. Arch. Mikrobiol., 55:278–308.

    Article  CAS  Google Scholar 

  • Werner, D. 1967a. Hemmung der Chlorophyllsynthese und der NADP+-abhängigen Glycerinaldehyd-3-phosphat-Dehydrogenase durch Germaniumsäure bei Cyclotella cryptica. Arch. Mikrobiol., 57:51–60.

    Article  CAS  Google Scholar 

  • Werner, D. 1967b. Untersuchungen über die Rolle der Kieselsäure in der Entwicklung höhere Pflanzen. I. Analyse der Hemmung durch Germaniumsäure. Planta (Berlin)., 76:25–36.

    Article  CAS  Google Scholar 

  • Werner, D. 1977. Silicate metabolism. In: D. Werner (ed). The biology of diatoms. University of California Press, Berkeley,California, P. 110–149

    Google Scholar 

  • Werner, D. 1978. Regulation of metabolism by silicon in diatoms. In: G. Bendz and I. Lindqvist (eds.), Biochemistry of silicon and related problems. Plenum Press, New York, pp. 149–176.

    Google Scholar 

  • Werner, D., and Petersen, M. 1973. Tracer Untersuchungen mit 71Germanium im Silikatstoffwechsel von Diatomeen. Z. Pfl. Physiol., 70:54–65.

    CAS  Google Scholar 

  • Weser, U. 1968a. Aktivitatshemmung der hefe alkohol dehydrogenase in gegenwart von germanat und borat. Hoppe Seyler’s Z. Physiol. Chem., 349:1479–1482.

    Article  PubMed  CAS  Google Scholar 

  • Weser, U. 1968b. Hemmung der o-diphenol-oxydase-aktivitat durch borat und germanat. Hoppe Seyler’s Z. Physiol. Chem., 349:982–988.

    Article  PubMed  CAS  Google Scholar 

  • Weser, U. 1968c. Einfluss des borates und germanats auf die RNA-biosynthese. Hoppe Seyler’s Z. Physiol. Chem., 349:989–994.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Azam, F., Volcani, B.E. (1981). Germanium-Silicon Interactions in Biological Systems. In: Simpson, T.L., Volcani, B.E. (eds) Silicon and Siliceous Structures in Biological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5944-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5944-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5946-6

  • Online ISBN: 978-1-4612-5944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics