Sequential Estimates of a Regression Function by Orthogonal Series with Applications in Discrimination

  • Leszek Rutkowski
Part of the Lecture Notes in Statistics book series (LNS, volume 8)


Let (X,Y) be a pair of random variables. X takes values in a Borel set A, A⊂ Rp, whereas Y takes values in R. Let f be the marginal Leb. esgue density of X. Based on a sample (X1, Y1),…, (Xn, Yn) of independent observations of (X,Y) we wish to estimate the regression r of Y on X, i.e
$${\rm{r(x) = E[Y|X = x]}}{\rm{.}}$$




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [l]
    Ahmad, I. A. and Lin, P. E., “Nonparametric sequential estimation of a multiple regression function,” Bull. Math. Statist., vol. 17, pp. 63–75, 1976.MathSciNetMATHGoogle Scholar
  2. [2]
    Čencov, N. N., “Evaluation of an unknown distribution density from observations,” Soviet Math., vol. 3, pp. 1559–1562, 1962.Google Scholar
  3. [3]
    Devroye, L. P., “Universal consistency in nonparametric regression and nonparametric discrimination,” Technical Report School of Computer Science, McGill university, 1978.Google Scholar
  4. [4]
    Devroye, 1. P. and Wagner, T. J., “On the L1 convergence of kernel estimators of regression functions with applications in discrimination,” to appear in Z. Wahrscheinlichkeitstheorie und Verw. Gebiete.Google Scholar
  5. [5]
    Greblicki, W., “Asymptotically optimal probabilistic algorithms for pattern recognition and identification,” Scientific Papers of the Institute of Technical Cybernetics of Wroclaw Technical University Wo. 18, Series: Monographs No. 3, Wroclaw 1974.Google Scholar
  6. [6]
    Greblicki, W., “Asymptotically optimal pattern recognition procedures with density estimates,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 250–251, 1978.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Loéve, M., “Probability Theory I,” 4th Edition, Springer-Verlag, 1977.Google Scholar
  8. [8]
    Sansone, G., “Orthogonal functions,” Interscience Publishers Inc., New York, 1959.MATHGoogle Scholar
  9. [9]
    Szegö, G., “Orthogonal polynomials,” Amer. Math. Soc. Coll. Publ., vol. 23, 1959.Google Scholar
  10. [10]
    Tucker, H. G., “A graduate course in probability,” Academic Press, 1967.Google Scholar
  11. [l1]
    Wertz, W. and Schneider, B., “Statistical density estimation: a bibliography,” Intexnat. Statist. Rev., vol. 47, pp. 155–175, 1979.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Leszek Rutkowski
    • 1
  1. 1.Technical University of CzęstochowaPoland

Personalised recommendations