Otolith Organ Receptor Morphology in Herring-like Fishes

  • Christopher Platt
  • Arthur N. Popper


Fishes of the order Clupeiformes, which includes the herrings, sardines, and anchovies, have unusual structures associated with the inner ear that may function to enhance acoustic sensitivity (27,30,35). A pair of slender, hollow ducts extend forward from the gas bladder and connect to closed gas filled portions of special otic bullae. Both the pro-otic and pterotic bullae have surfaces contacting the wall of the utricle within the membranous labyrinth.


Hair Cell Morphological Polarization Otolith Organ Utricular Macula Raja Clavata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J., Blaxter, J.H.S., and Denton, E.J.: The functional anatomy and development of the swimbladder-inner ear-lateral line system in herring and sprat. J. Marine Biol. Assoc. U.K. 56:471, 1976.CrossRefGoogle Scholar
  2. 2.
    Dale, T.: The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidae). Nord. J. Zool. 24:85, 1976.Google Scholar
  3. 3.
    Denton, E.J. and Blaxter, J.H.S.: The mechanical relationships between the clupeid swimbladder, inner ear, and lateral line. J. Marine Biol. Assoc. U.K. 56:787, 1976.CrossRefGoogle Scholar
  4. 4.
    Denton, E.J. and Gray, J.A.B.: The analysis of sound by the sprat ear. Nature 282:406, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Enger, P.S.: Hearing in herring. Comp. Biochem. Physiol. 22:527, 1967.PubMedCrossRefGoogle Scholar
  6. 6.
    Enger, P.S.: On the orientation of haircells in the labyrinth of perch (Perca fluviatilis). In: Schuijf, A., and Hawkins, A.D. (eds.): Sound Reception in Fish. Amsterdam, Elsevier, 1976, pp. 49–62.Google Scholar
  7. 7.
    Flock, Å.: Structure of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J. Cell Biol. 22:413, 1964.PubMedCrossRefGoogle Scholar
  8. 8.
    Hama, K.: A study on the fine structure of the saccular macula of the goldfish. Z. Zellforsch. Mikrosk. Anat. 94:155, 1969.PubMedCrossRefGoogle Scholar
  9. 9.
    Hudspeth, A.J. and Corey, D.P.: Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. U.S.A. 74:2407, 1977.PubMedCrossRefGoogle Scholar
  10. 10.
    Jenkins, D.: A transmission and scanning electron microscopic study of the saccule in five species of catfishes. Am. J. Anat. 154:81, 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Jørgensen, J.M.: Hair cell polarization in the flatfish inner ear. Acta Zool. 57:37, 1976.CrossRefGoogle Scholar
  12. 12.
    Lewis, E.R. and Li, C.W.: Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res. 83:35, 1975.CrossRefGoogle Scholar
  13. 13.
    Lindeman, H.H.: Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb. Anat. Entwickl.-Gesch. 42:1, 1969.Google Scholar
  14. 14.
    Lowenstein, O.: The electrophysiological study of the response of the isolated labyrinth of the lamprey (Lampetra fluviatilis) to angular acceleration, tilting and mechanical vibration. Proc. R. Soc. Lond. [Biol.] 174:419, 1970.CrossRefGoogle Scholar
  15. 15.
    Lowenstein, O.: The labyrinth. In Hoar, W.S. and Randall, D.J. (eds.): Fish Physiology, Vol. V. New York, Academic Press, 1971, pp. 207–240.Google Scholar
  16. 16.
    Lowenstein, O.: Comparative morphology and physiology. In Kornhuber, H.H. (ed.): Handbook of Sensory Physiology, Vol. VI, Vestibular System, Pt. 1. New York, Springer, 1974, pp. 75–120.Google Scholar
  17. 17.
    Lowenstein, O., Osborne, M.P., and Wersäll, J.: Structure and innervation of the sensory epithelia of the labyrinth in the thornback ray (Raja clavata). Proc. R. Soc. Lond. [Biol.] 160:1,1964.PubMedCrossRefGoogle Scholar
  18. 18.
    Lowenstein, O. and Wersäll, J.: A functional interpretation of the electronmicroscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata, in terms of directional sensitivity. Nature 184:1807, 1959.CrossRefGoogle Scholar
  19. 19.
    Miller, M.R.: Scanning electron microscope studies of some lizard basilar papillae. Am. J. Anat. 138:301, 1973.PubMedCrossRefGoogle Scholar
  20. 20.
    O’Connell, C.P.: The gas bladder and its relation to the inner ear in Sardinops caerulea and Engraulis mordax. U.S. Fish Wildlife Service Fishery Bull. 56:505, 1955.Google Scholar
  21. 21.
    Platt, C.: Hair cell distribution and orientation in goldfish otolith organs. J. Comp. Neurol. 172:283, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Popper, A.N.: Ultrastructure of the auditory regions in the inner ear of the lake whitefish. Science 192:1020, 1976.PubMedCrossRefGoogle Scholar
  23. 23.
    Popper, A.N.: A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J. Morphol. 153:397, 1977.CrossRefGoogle Scholar
  24. 24.
    Popper, A.N.: Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus). J. Comp. Neurol. 181:117, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Popper, A.N.: and Fay, R.R.: Sound detection and processing by fish: A critical review. J. Acoust. Soc. Am. 53:1515, 1973.PubMedCrossRefGoogle Scholar
  26. 26.
    Popper, A.N.: and Platt, C.J.: The herring ear has a unique receptor pattern. Nature 280:832, 1979.PubMedCrossRefGoogle Scholar
  27. 27.
    Retzius, G.: Das Gehörorgan der Wirbelthiere: morphologisch-histologische Studien. I. Das Gehörorgan der Fische und Amphibien. Stockholm, Samson and Wallin, 1881.Google Scholar
  28. 28.
    Saito, K.: Fine structure of macula of lagena in the teleost inner ear. Kaibogaku Zasshi Acta Anat. 48:1, 1973.Google Scholar
  29. 29.
    Sand, O.: Directional sensitivity of microphonic potentials from the perch ear. J. Exp. Biol. 60:881, 1974.PubMedGoogle Scholar
  30. 30.
    Tavolga, W.N.: Sound production and detection. In: Hoar, W.S. and Randall, D.J. (eds.): Fish Physiology, Vol. V. New York, Academic Press, 1971, pp. 135–205.Google Scholar
  31. 31.
    von Frisch, K.: Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische. Z. Vergl. Physiol. 25:703, 1938.CrossRefGoogle Scholar
  32. 32.
    von Holst, E.: Die Arbeitsweise des Statolithenapparates bei Fischen. Z. Vergl. Physiol. 32:60, 1950.CrossRefGoogle Scholar
  33. 33.
    Weiss, T.F., Mulroy, M.J., Turner, R.G., and Pike, C. L.: Tuning of single fibers in the cochlear nerve of the alligator lizard: Relation to receptor morphology. Brain Res. 115:71, 1976.PubMedCrossRefGoogle Scholar
  34. 34.
    Wersäll, J., Flock, Å., and Lundquist, P.G.: Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harbor Symp. Quant. Biol. 30:115, 1965.PubMedGoogle Scholar
  35. 35.
    Wohlfahrt, T.A.: Das Ohrlabyrinth der Sardine (Clupea pilchardus Walb.) und seine Beziehungen zur Schwimmblase und Seitenlinie. Z. Morphol. Oekol. Tiere 31:371, 1936.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Christopher Platt
  • Arthur N. Popper

There are no affiliations available

Personalised recommendations