Visual and Vestibular Influences in Human Self-Motion Perception

  • Laurence R. Young

Abstract

Visual-vestibular interaction is interpreted as one of a more general case of interaction of multiple sensory inputs in the process of estimation of state. Our general approach to this problem, as illustrated in the diagram of Fig. 24-1, has been to consider the human as an optimal state estimator (30,3 1). He takes information coming from the various indicated sensors and combines them with an “expected state” signal which is generated from his inter nal model of what he believes his control mechanisms to be, as reflected in active movements. The estimator produces both an estimate of his current state (rotation, translation, and orientation with respect to the vertical) and an estimate of the conflict in these cues. If the conflicts exceed some threshold, disorientation, motion sickness, and vertigo may result. The development of this conflict is also seen as a necessary one for the process of habituating to an altered environment. The altered environment may either be associated with external changes such as the well-known prism-wearing experiments or the altered environment associated with motion in a rotating vehicle or in a weightless environment, or it may be an internally altered environment, for example, by the removal of one labyrinth.

Keywords

Respiration Neurol Posite Sine Dial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allum, J.H.J., Graf, W., Dichgans, J., and Schmidt, C.L.: Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp. Brain Res. 26:463, 1976.PubMedCrossRefGoogle Scholar
  2. 2.
    Asch, S.E. and Witkin, H.A.: Studies in space orientation. I. Perception of the upright with displaced visual fields. J. Exp. Psychol. 38:325, 1948.PubMedCrossRefGoogle Scholar
  3. 3.
    Asch, S.E. and Witkin, H.A.: Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J. Exp. Psychol. 38:455, 1948.PubMedCrossRefGoogle Scholar
  4. 4.
    Berthoz, A., Pavard, B., and Young, L.R.: Perception of linear horizontal self-motion induced by peripheral vision (linearvection): basic characteristics and visual-vestibular interactions. Exp. Brain Res. 23:471, 1975.PubMedGoogle Scholar
  5. 5.
    Blanks, R.H.I., Curthoys, I.S., and Markham, C.H.: Planar relationships of the semicircular canals in man. Acta Otolaryngol. 80:185, 1975.PubMedCrossRefGoogle Scholar
  6. 6.
    Borah, J., Young, L.R., and Curry, R.E.: Optimal estimator model for human orientation. IEEE Trans Systems Man-Cybernetics, 1980.Google Scholar
  7. 7.
    Borah, J., Young, L.R., and Curry, R.E.: Sensory Mechanism Modelling. Air Force Human Resources Laboratory Report AFHRL-TR-78-83, 1979.Google Scholar
  8. 8.
    Brandt, T., Dichgans, J., and Büchele, W.: Motion habituation: Inverted self-motion perception and optokinetic after-nystagmus. Exp. Brain Res. 21:337, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Brandt, T., Dichgans, J., and Koenig, E.: Differential effects of central versus peripheral vision on egocentric motion perception. Exp. Brain Res. 16:451, 1973.CrossRefGoogle Scholar
  10. 10.
    Büttner, U. and Henn, V.: Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res. 103:127, 1976.PubMedCrossRefGoogle Scholar
  11. 11.
    Büttner, U., Henn, V., and Oswald, H.P.: Vestibular related neuronal activity in the thalamus of the alert monkey during stimulation in the dark. Exp. Brain Res. 30:435, 1977.PubMedCrossRefGoogle Scholar
  12. 12.
    Chu, W.H.N.: Dynamic Response of Human Linearvection. S.M. Thesis. Cambridge, Mass., Department of Aeronautics and Astronautics, M.I.T., 1976.Google Scholar
  13. 13.
    Daunton, N.D. and Thomsen, D.: Visual modulation of otolith-dependent units in cat vestibular nucleus. Exp. Brain Res. 37:173, 1979.PubMedCrossRefGoogle Scholar
  14. 14.
    Dichgans, J. and Brandt, T.: Visual vestibular interaction: Effects on motor perception and postural control. In Jung, R., Autrun, H., Lowenstein, W.R., Mackey, D.M., and Teuber, H.L. (eds.): Handbook of Sensory Physiology, Vol. VII. Perception. Berlin, Springer-Verlag, 1978.Google Scholar
  15. 15.
    Dichgans, J. and Brandt, T.: Pseudocoriolis effects and motion sickness induced by moving visual stimuli. Acta Otolaryngol. 76:339, 1972.CrossRefGoogle Scholar
  16. 16.
    Dichgans, J., Schmidt, C.L., and Graf, W.: Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp. Brain Res. 18:319, 1973.PubMedGoogle Scholar
  17. 17.
    Dichgans, J., Held, R., Young, L.R., and Brandt, T.: Moving visual scenes influence the apparent direction of gravity. Science 178:1217, 1972.PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer, M.H. and Kornmüller, A.E.: Optokinetisch ausgeloste Bewegungswahrnehmungen und optokinetischer Nystagmus. J. Psychol. Neurol. 41:273, 1930.Google Scholar
  19. 19.
    Henn, V.S. and Young, L.R.: Ernst Mach on the vestibular organ 100 years ago. Ann. Otorhinolaryngol. 37:138, 1975.Google Scholar
  20. 20.
    Henn, V.S., Young, L.R., and Finley, C.: Vestibular nucleus units in alert monkeys are also influenced by moving visual scenes. Brain Res. 71:146, 1974.CrossRefGoogle Scholar
  21. 21.
    Huang, J.K. and Young, L.R.: Sensation of rotation about a vertical axis with a fixed visual field in different illuminations and in the dark. Exp. Brain Res. 41:172–183, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Keller, E.L. and Precht, W.: Persistence of visual response in vestibular nucleus neurons in cerebellectomized cat. Exp. Brain Res. 32:591, 1978.PubMedCrossRefGoogle Scholar
  23. 23.
    Lestienne, F., Soechtung, J., and Berthoz, A.: Postural readjustment induced by linear motion of visual scenes. Exp. Brain Res. 28:363, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Mach, E.: Grundlinien der Lehre von den Bewegungsempfindungen. Leipzig, Englemann, 1875.Google Scholar
  25. 25.
    Malcolm, R. and Melvill Jones, G.: Erroneous perception of vertical motion by humans seated in the upright position. Acta Otolaryngol. 77:214, 1974.CrossRefGoogle Scholar
  26. 26.
    Melvill Jones, G. and Young, L.R.: Subjective detection of vertical accelerations: A velocity dependent response? Acta Otolaryngol. 85:45, 1978.Google Scholar
  27. 27.
    Spoendlin, H.: Ultrastructure of the vestibular sense organ. In Wolfson, RJ. (ed.): The Vestibular System and Its Diseases. Philadelphia, University of Pennsylvania Press, 1966.Google Scholar
  28. 28.
    Waespe, W. and Henn, V.: Neuronal activity in the vestibular and optokinetic stimulation. Exp. Brain Res. 27:523, 1977.PubMedCrossRefGoogle Scholar
  29. 29.
    Witkin, H.A.: The perception of the upright. Sci. Am. 182:50, 1959.CrossRefGoogle Scholar
  30. 30.
    Young, L.R.: Developments in Modelling Visual-Vestibular Interactions. AMRL-TR-71-14. Wright-Patterson Air Force Base, Dayton, Ohio, 1971.Google Scholar
  31. 31.
    Young, L.R.: On visual vestibular interaction. In: Fifth Symposium on the Role of the Vestibular Organs in Space Exploration. NASA SP-314, 1970.Google Scholar
  32. 32.
    Young, L.R., Dichgans, J., Murphy, R., and Brandt, T.: Interaction of optokinetic and vestibular stimuli in motion perception. Acta Otolaryngol. 76:24, 1973.PubMedCrossRefGoogle Scholar
  33. 33.
    Young, L.R. and Oman, CM.: Influence of head position on visually induced motion effects in three axes of rotation. Proceedings of the Tenth Annual Conference on Manual Control, Wright-Patterson Air Force Base, Dayton, Ohio, 1974.Google Scholar
  34. 34.
    Young, L.R., Oman, CM., and Dichgans, J.M.: Influence of head orientation on visually induced pitch and roll sensation. Aviat. Space Environ. Med. 24:264, 1975.Google Scholar
  35. 35.
    Zacharias, G.L.: Motion Sensation Dependence on Visual and Vestibular Cues. Ph.D. Thesis. Department of Aeronautics and Astronautics, M.I.T., 1977.Google Scholar
  36. 36.
    Zacharias, G.L. and Young, L.R.: Influence of combined visual and vestibular cues on human perception and control of horizontal rotation, Exp. Brain Res. 41:159–171, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Laurence R. Young

There are no affiliations available

Personalised recommendations